Übungsblatt Nr. 0, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß

1	Beantworten Sie die folgenden Fragen über Mengen:					
	Ist die Menge $\{1\}$ eine Teilmenge der Menge $\{1, \{2, 3, 4\}, 5\}$?	◯ Ja / ◯ Nein				
	Ist die Menge $\{1, \{2, 3, 4\}\}$ eine Teilmenge der Menge $\{1, \{2, 3, 4\}, 5\}$?	◯ Ja / ◯ Nein				
	Wieviele verschiedene Abbildungen von der Menge {1,2} gibt es in die					
	Menge {1, 2, 3}?					
	Wieviele Elemente hat die Menge $\{1, \{2, 3, 4\}, 5\}$?	$\bigcirc 3/\bigcirc 5$				
2	Berechnen Sie die folgenden Aufgaben und kreuzen Sie das richtige Ergebni	is an:				
	$4+2\cdot3$	○ 10 / ○ 18				
	2^{2^3}	○ 64 / ○ 256				
	$3\cdot (4+2)$	○ 14 / ○ 18				
	$\frac{7}{2} + \frac{5}{2}$	\bigcirc 6 / \bigcirc 3				
3	Kreuzen Sie jeweils "Ja" an, wenn die Aussage stimmt oder "Nein", wenn si	e nicht stimmt!				
	$\frac{1}{2} + \frac{1}{3} = \frac{5}{6}$	○ Ja / ○ Nein				
	$\frac{x^2-1}{x-1} = \frac{x+1}{1}$, wobei x eine beliebige rationale Zahl ungleich 1 ist.	○ Ja / ○ Nein				
	$\frac{5}{7} < \frac{7}{12}$	○ Ja / ○ Nein				
	$\frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$	◯ Ja / ◯ Nein				
4	Beantworten Sie die folgenden Fragen (geben Sie nur Zahlen ein, keine Ei	inheiten und kein %-				
	Zeichen):					
	Ein Angestellter bekommt eine Gehaltserhöhung von 4% und verdient da-					
	nach 2600 Euro. Wieviele Euro verdiente er vor der Gehaltserhöhung?					
	Zehn Affen fressen in einer Woche eine Tonne Bananen. Wieviele Tage					
	brauchen 7 Affen, um eine halbe Tonne Bananen zu fressen?					
	Zwei Backsteine wiegen zusammen 24 Kilogramm. Wieviele Kilogramm wiegen 5 Backsteine?					
	Wenn man 2000 Euro um 26 Prozent vermehrt, wieviele Euro hat man dann?					
5	Kreuzen Sie "Ja" an, wenn die Aussage stimmt und "Nein" sonst.					
	Wenn eine natürliche Zahl durch 2 und durch 3 teilbar ist, dann ist sie auch	◯ Ja / ◯ Nein				
	durch 6 teilbar.	Ja / O Nem				
	Wenn eine natürliche Zahl a durch 6 teilbar ist, dann ist a^2 auch durch 6	○ Ja / ○ Nein				
	teilbar.					
	Wenn zwei natürliche Zahlen a und b jeweils durch 2 teilbar ist, dann ist	○ Ja / ○ Nein				
	ihre Summe $a + b$ durch 4 teilbar.					
	Ist eine natürliche Zahl a durch 6 teilbar und eine andere natürliche Zahl b	○ Ja / ○ Nein				
	durch a teilbar, dann ist auch b durch 6 teilbar.					
Di	e folgende Aufgabe ist schriftlich zu bearbeiten.					
6	Auf 100 Affen werden 1600 Kokosnüsse verteilt, wobei einige Affen auch le	_				
	Man beweise, dass es — ganz gleich wie die Verteilung erfolgt — stets mindestens vier Affen mit					
A 1	derselben Anzahl von Kokosnüssen gibt.					
	Abgabe bis spätestens am Freitag, dem 19. Oktober 2001, um 14 Uhr. Dieses Blatt brauchen Sie noch nicht abzugeben, es geht nicht in die Wertung ein!					
ועו	cool Dian diagonom die noom ment adzagodon, ob gont ment in die wertung en	ш,				

Übungsblatt Nr. 1, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß

1	Kreuzen Sie jeweils "Ja" an, wenn die Aussage stimmt oder "Nein", wenn sie nicht stimmt!				
	$\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \subseteq \mathbb{Z} \times \mathbb{Z}$	○ Ja / ○ Nein			
	$\{x \in \mathbb{Z} \mid x \text{ ist durch } 6 \text{ teilbar}\} \subseteq \{x \in \mathbb{Z} \mid x \text{ ist gerade}\}$	○ Ja / ○ Nein			
	Die Menge $Pot(\{1,\{2,3\},3\})$ hat 8 Elemente.	◯ Ja / ◯ Nein			
	$\{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid x^2 + y^2 = 0\} \subseteq \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid x + y = 0\}$	○ Ja / ○ Nein			
	Die Menge $\{(x,y) \in \{1,2,3\} \times \{2,3\} \mid x \cdot y \text{ ist ungerade}\}$ hat 2 Elemente.	○ Ja / ○ Nein			
2	Es seien A , B und C beliebige Mengen. Kreuzen Sie jeweils "Ja" an, wenn	die Aussage stimmt			
	oder "Nein", wenn sie nicht stimmt!				
	$(A \cap B) \cup C = A \cap (B \cup C)$	○ Ja / ○ Nein			
	Ist $A \subseteq B$, dann ist $C \cup A \subseteq C \cup B$.	○ Ja / ○ Nein			
	$(A \cup B) \cup C = A \cup (B \cup C)$	○ Ja / ○ Nein			
	Wenn $A \cup B \subseteq C$ gilt, dann gilt sowohl $A \subseteq C$ als auch $B \subseteq C$.	○ Ja / ○ Nein			
	$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$	○ Ja / ○ Nein			
3	Geben Sie jeweils die Anzahl der Abbildungen mit den beschriebenen Eigens	schaften an.			
	Anzahl der bijektiven Abbildungen von $\{1,2,3\}$ nach $\{1,2,3\}$.				
	Anzahl der surjektiven Abbildungen von $\{-3, -2, -1\}$ nach $\{1, \{2, 3\}, 3\}$.				
	Anzahl der surjektiven Abbildungen von $\{1,2,3\}$ nach $\{\emptyset\}$.				
	Anzahl der injektiven Abbildungen von \emptyset nach $\{1, 2, 3\}$.				
	Anzahl der surjektiven Abbildungen von $\{1,2\}$ nach $\{3,4,5\}$.				
4	Kreuzen Sie jeweils "Ja" an, wenn die Aussage stimmt oder "Nein", wenn sie	e nicht stimmt!			
	Die Abbildung $f: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q} \times \mathbb{Q}, (x,y) \mapsto (x+y,x-y)$ ist surjektiv.	○ Ja / ○ Nein			
	Die Abbildung $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ ist injektiv.	○ Ja / ○ Nein			
	Die Abbildung $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, (x,y) \mapsto x+y$ ist surjektiv.	○ Ja / ○ Nein			
	Die Abbildung $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}, x \mapsto (x, -x)$ ist surjektiv.	○ Ja / ○ Nein			
	Die Abbildung $f: \mathbb{Q} \to \mathbb{Q}, x \mapsto 2 \cdot x$ ist surjektiv.	○ Ja / ○ Nein			
Di	e folgenden Aufgaben sind schriftlich zu bearbeiten.				
5	Beweisen Sie mit Hilfe von vollständiger Induktion.				
	(i) Eine Menge mit n Elementen hat 2^n Teilmengen.				
	(ii) $\sum_{i=1}^{n} i = n(n+1)/2$.				
	(iii) Finden Sie zuerst eine Formel, die für $n\in\mathbb{N}$ die Summe der ungerachten $2n-1$ angibt, und beweisen Sie diese.	den Zahlen von 1 bis			

- 6 Sei M eine endliche Menge und $f:M\longrightarrow M$ eine Abbildung. Zeigen Sie, dass die folgenden Aussagen äquivalent sind.
 - (a) f ist surjektiv.
 - (b) f ist injektiv.
 - (c) f ist bijektiv.

Geben Sie eine Abbildung $g:\mathbb{N}\longrightarrow\mathbb{N}$ an, die zeigt, dass die oben angegebene Äquivalenz für unendliche Mengen nicht gilt.

Abgabe bis spätestens am Freitag, dem 26. Oktober 2001, um 12 Uhr im Zettelkasten am Lehrstuhl D für Mathematik.

Übungsblatt Nr. 2, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß

1	Die folgenden Abbildungen seien gegeben.	
	$f: \mathbb{R} \longrightarrow \mathbb{Z}, x \mapsto \{p \in \mathbb{N} \mid p \text{ Primzahl}, p \leq x\} $	
	$g: \mathbb{Z} \longrightarrow \mathbb{Q}, x \mapsto 4x$ $h: \mathbb{Q} \longrightarrow \{10, 23, 19, 1\}, x \mapsto 1$	
	Es gilt $(h \circ g) \circ f = h \circ (g \circ f)$.	○ Ja / ○ Nein
	Der Wertebereich von $h \circ g$ ist \mathbb{Z} .	◯ Ja / ◯ Nein
	Das Bild von $h \circ g$ enthält genau ein Element.	○ Ja / ○ Nein
	Die Komposition $g \circ h$ ist definiert.	◯ Ja / ◯ Nein
	Die Faser $(h \circ g \circ f)^{-1}(\{1\})$ ist \mathbb{R} .	○ Ja / ○ Nein
2	Gelten die folgenden Aussagen für alle Abbildungen $f:\mathbb{Z}\longrightarrow\mathbb{Q}$ und $g:\mathbb{Q}$	$\longrightarrow \{1,2,3\}?$
	Das Urbild $g^{-1}(\{1,2,3\})$ ist \mathbb{Q} .	○ Ja / ○ Nein
	Falls jede Faser von f genau ein Element besitzt, so ist f bijektiv.	○ Ja / ○ Nein
	Das Bild von g ist $\{1, 2, 3\}$.	○ Ja / ○ Nein
	Der Wertebereich von g ist \mathbb{Q} .	○ Ja / ○ Nein
	Der Definitionsbereich von f ist \mathbb{Z} .	◯ Ja / ◯ Nein
3	Sei (LGS) das lineare Gleichungssytem über \mathbb{R} :	
	$a_{11} x_1 + a_{12} x_2 + \ldots + a_{1n} x_n = b_1$	
	$a_{21} x_1 + a_{22} x_2 + \ldots + a_{2n} x_n = b_2$	
	:	
	$a_{m1} \ x_1 + a_{m2} \ x_2 + \ldots + a_{mn} \ x_n = b_m$	
	Die x_i sind die Unbekannten des (LGS).	○ Ja / ○ Nein
	Ist $b_i = 1$ für alle $1 \le i \le m$, dann gibt es eine Lösung.	○ Ja / ○ Nein
	Sind für alle $1 \leq i \leq m$ und $1 \leq j \leq n$ die Koeffizienten $a_{ij} \in \mathbb{Z}$ und	◯ Ja / ◯ Nein
	$b_i \in \mathbb{Z}$, dann besteht auch jede Lösung aus Zahlen in \mathbb{Z} .	
	Wenn $m < n$ ist, dann gibt es unendlich viele Lösungen.	○ Ja / ○ Nein
	Die Koeffizienten des (LGS) sind die x_i .	○ Ja / ○ Nein
4	In den folgenden Aufgaben sei K ein beliebiger Körper mit Nullelement 0 und K	nd Einselement 1.
	Für jedes $a \in K$ mit $a \neq 0$ ist $(a^{-1})^{-1} = a$.	○ Ja / ○ Nein
	Für $a \in K$, $a \neq 0$, ist die Abbildung $K \longrightarrow K$, $x \mapsto ax$, bijektiv.	○ Ja / ○ Nein
	Für alle $a \in K$ gilt $-(-a) - a = 0$.	○ Ja / ○ Nein
	Für alle $a \in K$ gilt $0 \cdot a = 0$.	○ Ja / ○ Nein
	Für alle $a, b, c \in K$ ist $(a + 0 - c)(b + 1) = b(a + b - c) + a - b^2 - c$.	○ Ja / ○ Nein
Di	e folgenden Aufgaben sind schriftlich zu bearbeiten.	

- 5 Sei $f:M\to N$ eine Abbildung zwischen den Mengen M und N. Zeigen Sie die folgenden Aussagen.
 - (a) f ist genau dann bijektiv, wenn eine Abbildung $g:N\to M$ existiert mit $f\circ g=\mathrm{id}_N$ und $g\circ f=\mathrm{id}_M$.
 - (b) Wenn eine Abbildung $g: N \to M$ existiert mit $f \circ g = \mathrm{id}_N$, dann ist f surjektiv.
 - (c) Wenn eine Abbildung $g: N \to M$ existiert mit $g \circ f = \mathrm{id}_M$, dann ist f injektiv.
- 6 Für welche Werte $a \in \mathbb{R}$ hat das lineare Gleichungssystem

$$5x_1 +6x_2 +(a+15)x_3 = 7$$

$$-x_1 +(a-3)x_3 = 1$$

$$2x_1 +2x_2 +6x_3 = 2$$

$$2x_1 +(a+2)x_2 +7x_3 = 4$$

über den reellen Zahlen (a) keine, (b) genau eine, (c) genau zwei oder (d) unendlich viele Lösungen?

Abgabe bis spätestens am Freitag, dem 2. November 2001, um 12 Uhr im Zettelkasten am Lehrstuhl D für Mathematik.

Übungsblatt Nr. 3, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß

1	Es sei K ein beliebiger Körper. Sind die folgenden Aussagen wahr?	
	Es sei $0 \neq a \in K$ und $b \in K$. Dann hat die Gleichung $ax = b$ in K eine	○ Ja / ○ Nein
	Lösung.	
	Jeder Körper hat nur endlich viele Elemente.	◯ Ja / ◯ Nein
	In jedem Körper K gilt $(a + b)(c + d) = ac + ad + bc + bd$ für beliebige	◯ Ja / ◯ Nein
	$a,b,c,d \in K$.	
	In jedem Körper ist $1+1 \neq 0$.	◯ Ja / ◯ Nein
	Es gilt $a + (b \cdot c) = (a + b) \cdot (a + c)$ für beliebige $a, b, c \in K$.	◯ Ja / ◯ Nein
2	Sind die folgenden Aussagen über lineare Gleichungssysteme wahr?	
	Jedes homogene lineare Gleichungssystem hat unendlich viele Lösungen.	○ Ja / ○ Nein
	Die Nullspalte ist in der Lösungsmenge jedes beliebigen linearen Glei-	○ Ja / ○ Nein
	chungssystems.	
	Zwei lineare Gleichungssysteme haben genau dann dieselbe	○ Ja / ○ Nein
	Lösungsmenge, wenn das eine aus dem anderen durch genau eine	
	elementare Zeilenumformung hervorgeht.	
	Es gibt keine linearen Gleichungssysteme mit genau einer Lösung.	○ Ja / ○ Nein
	Jedes lineare Gleichungssystem hat eine Lösung.	○ Ja / ○ Nein
3	Sei $A = (a_{ij})_{\begin{subarray}{c} 1 \le i \le 2 \\ 1 \le j \le 3 \end{subarray}} = \left(\begin{array}{cc} 12 & 3 & -1 \\ -1 & 9 & -4 \end{subarray} \right) \in \mathbb{R}^{2 \times 3}.$	
3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$a_{11} + a_{23} = a_{21} + a_{22}$	○ Ja / ○ Nein
	A ist die erweiterte Koeffizientenmatrix eines inhomogenen linearen Glei-	○ Ja / ○ Nein
	chungssystems.	O Curr O I venn
	Die Lösungsmenge des homogenen linearen Gleichungssystems mit Koef-	○ Ja / ○ Nein
	fizientenmatrix A ist eine Teilmenge von \mathbb{R}^3 .	
	Jede Lösung des homogenen linearen Gleichungssystems mit Koeffizien-	○ Ja / ○ Nein
	tenmatrix A ist auch eine Lösung der Gleichung	
	$10x_1 + 21x_2 - 11x_3 = 0.$	
	Die Matrix A hat 3 Zeilen und zwei Spalten.	○ Ja / ○ Nein
4	Die Koeffizienten der Matrizen in den folgenden Aufgaben seien alle aus $\mathbb{R}.$	
	Sei A in Zeilenstufenform und seien die i -te und j -te Zeile für $i \neq j$ ver-	○ Ja / ○ Nein
	schieden. Vertauscht man die i -te und j -te Zeile, so erhält man eine Matrix,	
	die keine Zeilenstufenform hat.	
	$\begin{pmatrix} 1 & 3 \end{pmatrix}$	
	Die Matrix $\begin{vmatrix} -2 & -6 \end{vmatrix}$ lässt sich durch elementare Zeilenumformungen	○ Ja / ○ Nein
	auf eine Zeilenstufenform mit einer Nullzeile bringen.	
	Die Matrix $\begin{pmatrix} 0 & 0 & 0 \\ & & \end{pmatrix}$ ist in Zeilenstufenform.	○ Ja / ○ Nein
	Die Wattix $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$ ist in Zenenstulemorni.	
	Sei A eine Matrix in Zeilenstufenform und habe A eine Nullzeile. Dann hat	○ Ja / ○ Nein
	das durch A beschriebene homogene lineare Gleichungssystem unendlich	
	viele Lösungen.	

D: 14	4	3	6	\ , (6	1	16		
Die Matrizen	1	-1	5	und (1	-1	5	gehen durch eine ein-	Ja / Nein
zelne elementare Zeilenumformung auseinander hervor									

Die folgenden Aufgaben sind schriftlich zu bearbeiten.

- 5 Es sei K ein Körper. Beweisen Sie die folgenden Aussagen, verwenden Sie **nur** die Körperaxiome oder Aufgabenteile, die sie bereits bewiesen haben.
 - (i) $0 \cdot a = a \cdot 0 = 0$ für alle $a \in K$.
 - (ii) Gilt a + b = 0 mit $a, b \in K$, so ist b = -a.
 - (iii) $-a = (-1) \cdot a$ für alle $a \in K$.
 - (iv) -(-a) = a für alle $a \in K$.
 - (v) Gilt $a \cdot b = 1$ mit $a, b \in K$, so ist $b = a^{-1}$.
 - (vi) Sei $0 \neq a \in K$. Dann ist $(a^{-1})^{-1} = a$.
 - (vii) Gilt für ein $b \in K$, dass a + b = a ist für alle $a \in K$, so ist b = 0.
 - (viii) Gilt für ein $b \in K$, dass $a \cdot b = a$ ist für alle $a \in K$, so ist b = 1.
 - (ix) Ist $a \cdot b = 0$ mit $a, b \in K$, dann ist a = 0 oder b = 0 (oder beides).
 - (x) $(-a) \cdot (-b) = a \cdot b$ für alle $a, b \in K$.
- 6 Beantworten Sie die folgenden Fragen durch einen Beweis oder ein Beispiel (mit Begründung!).
 - (i) Gibt es ein homogenes lineares Gleichungssystem über $\mathbb R$ mit Lösungsmenge

$$\left\{ \left(\begin{array}{c} x \\ y \end{array} \right) \in \mathbb{R}^2 \, \middle| \, x = 0 \text{ oder } y = 0 \right\}?$$

(ii) Gibt es ein inhomogenes lineares Gleichungssystem über $\mathbb R$ mit Lösungsmenge

$$\left\{ \left(\begin{array}{c} x \\ y \end{array} \right) \in \mathbb{R}^2 \, \middle| \, \left(\begin{array}{c} x \\ y \end{array} \right) \neq \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \right\}?$$

Abgabe bis spätestens am Freitag, dem 9. November 2001, um 12 Uhr im Zettelkasten am Lehrstuhl D für Mathematik.

Übungsblatt Nr. 4, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß

1	Es sei	
	/	
	$(A,b) := \left(\begin{array}{ccc c} 1 & -2 & 3 & 12 \\ a & -1 & 3 & 12 \\ -2 & -3 & 2 & 0 \end{array}\right)$	
	$\begin{pmatrix} -2 & -3 & 2 & 0 \end{pmatrix}$	
	die erweiterte Matrix eines inhomogenen linearen Gleichungssystems über	\mathbb{Q} und $\frac{13}{5} \neq a \in \mathbb{Q}$.
	Lösen Sie das Gleichungssystem und beantworten Sie die folgenden Fragen.	
	Wenn $a=2$ ist, was ist dann die erste Komponente der Lösung?	
	Wenn $a = 1$ ist, was ist dann die zweite Komponente der Lösung?	
	Wenn $a=3$ ist, was ist dann die dritte Komponente der Lösung?	
	Wenn $a=2$ ist, was ist dann die dritte Komponente der Lösung?	
	Wenn $a=4$ ist, was ist dann die dritte Komponente der Lösung?	
2	Die Definitionen zur folgenden Aufgabe werden am Montag, dem 12.11.2 behandelt. Welche der folgenden Relationen <i>R</i> sind Äquivalenzrelationen?	001 in der Vorlesung
	$R = \{(a, b) \in \mathbb{Q} \times \mathbb{Q} \mid a - b = 1\}.$	◯ Ja / ◯ Nein
	$R = \{(A, B) \in \operatorname{Pot}(\mathbb{N}) \times \operatorname{Pot}(\mathbb{N}) \mid \text{es gibt eine bijektive Abbildung von } A$	○ Ja / ○ Nein
	nach B .	
	$R = \{(1,1), (2,2), (3,3), (1,2), (2,1)\} \subseteq \{1,2,3\} \times \{1,2,3\}.$	◯ Ja / ◯ Nein
	$R = \{(a, b) \in \mathbb{N} \times \mathbb{N} \mid a \cdot b = 1\}.$	○ Ja / ○ Nein
	$R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a - b \text{ ist durch 6 teilbar}\}.$	◯ Ja / ◯ Nein
3	Die folgenden Aussagen beziehen sich auf lineare Gleichungssysteme üb	er einem beliebigen
	Körper. Welche sind wahr?	
	Es gibt keine linearen Gleichungssysteme mit genau einer Lösung, die mehr	◯ Ja / ◯ Nein
	Gleichungen als Unbekannte haben. Jedes homogene lineare Gleichungssystem hat mehr als zwei Lösungen.	○ Ja / ○ Nein
	Jede Lösung eines linearen Gleichungssystems über \mathbb{R} , dessen Koeffizienten	<u> </u>
	alle positiv sind, enthält nur positive Zahlen.	◯ Ja / ◯ Nein
	Jedes lineare Gleichungssystem mit m Gleichungen, in dem mindestens	○ Ja / ○ Nein
	m-1 der Koeffizienten gleich 0 sind, hat eine Lösung.	
	Jedes homogene lineare Gleichungssystem mit mehr Unbekannten als Glei-	◯ Ja / ◯ Nein
	chungen hat unendlich viele Lösungen.	
4	Berechnen Sie für die folgenden Matrizen mit Einträgen aus den reellen Zal lenstufenform und geben Sie an, wieviele <i>Nullzeilen</i> das Ergebnis hat.	hlen jeweils eine Zei-
	(3 1 -1 4 1 6)	
	$\begin{bmatrix} -2 & 4 & 10 & -19 & -10 & -25 \end{bmatrix}$	
	7 8 9 \	
	$\left(\begin{array}{ccc}6&5&4\end{array}\right)$	
	$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$	

$ \left(\begin{array}{ccccc} 1 & 15 & 14 & 4 \\ 12 & 6 & 7 & 9 \\ 8 & 10 & 11 & 5 \\ 13 & 3 & 2 & 16 \end{array}\right) $	(magisches Quadrat)	
$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \left(\begin{array}{ccc} 3 & 1 & -1 \\ 4 & 2 & -10 \\ 1 & 1 & 1 \end{array}\right) $		

Die folgenden Aufgaben sind schriftlich zu bearbeiten.

5 Es sei $K = \{0, 1\}$ ein Körper mit zwei Elementen (siehe Vorlesung). Lösen Sie das inhomogene lineare Gleichungssystem über K mit der folgenden erweiterten Koeffizientenmatrix

$$(A|b) := \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \end{pmatrix}.$$

Benutzen Sie den Gauß-Algorithmus und dokumentieren Sie genau, was Sie tun! Wieviele Elemente hat die Lösungsmenge?

- 6 Entscheiden Sie, welche der folgenden drei Aussagen wahr sind. Begründen Sie Ihre Antwort. Bereits bewiesene Ergebnisse dürfen Sie natürlich im Folgenden verwenden.
 - (i) Ist L die Lösungsmenge eines inhomogenen linearen Gleichungssystems mit n Unbekannten über einem Körper K und $s \in K^n$ eine Lösung, dann gilt

$$L = \{ s + u \mid u \in L_0 \},\,$$

wobei L_0 die Lösungsmenge des zugehörigen homogenen linearen Gleichungssystems ist. (Hierbei ist, wie in der Vorlesung, s + u komponentenweise definiert.)

- (ii) Ein inhomogenes lineares Gleichungssystem über einem Körper K hat genau dann unendlich viele Lösungen, wenn das zugehörige homogene lineare Gleichungssystem unendlich viele Lösungen hat.
- (iii) Jedes lösbare inhomogene lineare Gleichungssystem über einem Körper K, das mehr Unbekannte als Gleichungen hat, hat unendlich viele Lösungen.

Abgabe bis spätestens am Freitag, dem 16. November 2001, um 12 Uhr im Zettelkasten am Lehrstuhl D für Mathematik.

Übungsblatt Nr. 5, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß

1	Welche der folgenden Aussagen über Relationen sind wahr?					
	Auf einer Menge mit drei Elementen gibt es genau 3 verschiedene Äquivalenzrelationen.	○ Ja / ○ Nein				
	Für jede Menge M gibt es mindestens eine Relation auf M , die reflexiv, symmetrisch und antisymmetrisch ist.	○ Ja / ○ Nein				
	Auf einer Menge mit vier Elementen gibt es genau 2 ¹² verschiedene reflexive Relationen.	○ Ja / ○ Nein				
	Auf einer dreielementigen Menge gibt es genau 512 verschiedene Relationen.	○ Ja / ○ Nein				
	Zwei Äquivalenzrelationen auf einer Menge M sind genau dann gleich, wenn jede Äquivalenzklasse bezüglich der ersten Relation auch eine Äquivalenzklasse bezüglich der zweiten ist.	○ Ja / ○ Nein				
2	Sei G eine Gruppe mit Verknüpfung \cdot und neutralem Element 1.					
	Falls für $g \in G$ gilt $(g^{-1})^{-1} = g$, so ist $g = 1$.	○ Ja / ○ Nein				
	Für $g \in G$ ist die Abbildung $r_g: G \to G, h \mapsto hg$ ein Isomorphismus.	○ Ja / ○ Nein				
	Zu jedem $n \in \mathbb{N}$ gibt es eine Gruppe mit genau n Elementen.	○ Ja / ○ Nein				
	Wenn für $a, g \in G$ die Gleichung $ag = g$ gilt, so ist $a = 1$.	○ Ja / ○ Nein				
	G ist genau dann abelsch, wenn G kommutativ ist.	○ Ja / ○ Nein				
3	Es seien G und H Gruppen und $\varphi:G\to H$ ein Gruppenhomomorphismus. Von G und H sei jeweils mit 1 bezeichnet. Welche der folgenden Aussagen s					
	Aus $x = y \in G$ folgt $\varphi(x) = \varphi(y)$.	○ Ja / ○ Nein				
	Gilt für zwei Elemente $x,y\in G$, dass $\varphi(x)\cdot \varphi(y)=1$ ist, so ist entweder $x=1$ oder $y=1$.	◯ Ja / ◯ Nein				
	Ist φ bijektiv, dann ist die Umkehrabbildung ebenfalls ein Gruppenhomomorphismus.	○ Ja / ○ Nein				
	Die Abbildung $\psi:G\to H$, für die $\psi(x)=\varphi(x)\cdot\varphi(x)$ für alle $x\in G$ gilt, ist ein Gruppenhomomorphismus.	◯ Ja / ◯ Nein				
	Ist $x = \varphi(1)$, so folgt $x = 1$.	◯ Ja / ◯ Nein				
4	Seien M und N Mengen, $\mathcal P$ eine Partition von M und $g:M\to N$ eine Abb	pildung.				
	Falls g surjektiv ist, so gibt es eine Äquivalenzrelation auf M , deren Äquivalenzklassen die Fasern von g sind.	○ Ja / ○ Nein				
	Falls M endlich ist, gibt eine Abbildung $f:M\to M$, so dass die Partition $\mathcal P$ genau aus den nicht-leeren Fasern von f besteht.	○ Ja / ○ Nein				
	$\{(x,y)\in M\times M\mid \text{ es gibt mindestens ein }C\in\mathcal{P}\text{ mit }\{x,y\}\subseteq C\}$ ist eine Äquivalenzrelation auf $M.$	○ Ja / ○ Nein				
	Die Fasern von g zu zwei Elementen von N sind entweder gleich oder ihr Durchschnitt ist die leere Menge.	○ Ja / ○ Nein				
	Falls M endlich ist, hat $\mathcal P$ höchstens soviele Elemente wie M .	○ Ja / ○ Nein				
Di	Die folgenden Aufgaben sind schriftlich zu bearbeiten.					

- 5 Es sei G eine Gruppe. Wir nennen eine Teilmenge $U \subseteq G$ eine **Untergruppe von** G, wenn sie bezüglich der Multiplikation von G eine Gruppe ist. Zeigen Sie:
 - (i) Eine nichtleere Teilmenge $U\subseteq G$ ist genau dann eine Untergruppe von G, wenn folgende Aussage gilt: Für alle $a\in U$ und $b\in U$, gilt $a\cdot b^{-1}\in U$.

Sei nun H eine weitere Gruppe und $\varphi:G\to H$ ein Gruppenhomomorphismus. Zeigen Sie:

- (ii) Es gilt $\varphi(1) = 1$.
- (iii) Es ist $\varphi(x^{-1}) = \varphi(x)^{-1}$ für alle $x \in G$.
- (iv) Die Menge $\varphi(G)$ ist eine Untergruppe von H.
- 6 Seien L, M und N Mengen. Beweisen Sie die folgenden Aussagen.
 - (i) Für bijektive Abbildungen $f: L \to M$ und $g: M \to N$ sind auch $g \circ f$ und f^{-1} bijektiv.
 - (ii) Die Gruppen S_M und S_N der Bijektionen von M nach M beziehungsweise N nach N sind genau dann isomorph, wenn es eine Bijektion $f: M \to N$ gibt.
 - (iii) Wenn M genau m Elemente hat, dann hat die Gruppe S_M genau m! Elemente.

Abgabe bis spätestens am Freitag, dem 23. November 2001, um 12 Uhr im Zettelkasten am Lehrstuhl D für Mathematik.

Übungsblatt Nr. 6, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß

1	Betrachten Sie die folgenden Matrizen mit reellen Koeffizienten.					
	$A := \begin{pmatrix} 14 & -13 \\ 1 & -19 \\ 5 & 6 \end{pmatrix}, B := \begin{pmatrix} 14 & -13 & 2 \\ 1 & -19 & 5 \end{pmatrix}, C := \begin{pmatrix} 4 & 3 & 2 \\ -1 & -2 & -3 \\ 9 & 12 & -24 \end{pmatrix}, D := \begin{pmatrix} 1 & -6 \\ -1 & 7 \end{pmatrix}.$					
	$A := \begin{pmatrix} 1 & -19 \\ 5 & 6 \end{pmatrix}, D := \begin{pmatrix} 1 & -19 & 5 \end{pmatrix}, C := \begin{pmatrix} -1 & -2 & -3 \\ 9 & 12 & -24 \end{pmatrix}, D := \begin{pmatrix} 1 & -19 & 5 \end{pmatrix}$	-1 7).				
	Entscheiden Sie für jeden der folgenden Ausdrücke, ob er sinnvoll ist und ei					
	definiert. Falls nein, kreuzen Sie Q an (für Quatsch) und sonst kreuzen sie de	n Eintrag x_{11} an.				
	$X = ADB - 4C^2$	\bigcirc Q / \bigcirc 79 / \bigcirc 18				
	$X = D^3 B - C$	\bigcirc Q / \bigcirc 326 / \bigcirc 388				
	X = CAD + A	\bigcirc Q / \bigcirc 180 / \bigcirc 62				
	X = CAC	○ Q / ○ -97 / ○ 188				
	$X = 7BA - 193D^2$	$\bigcirc Q / \bigcirc 0 / \bigcirc 1$				
2	Rechnen Sie jeweils in $\mathbb{Z}/n\mathbb{Z}$ und kreuzen Sie einen Vertreter der Ergebnisre	estklasse an.				
	Es sei $n = 15$. Was ist $\overline{3} \cdot \overline{5}$?	$\bigcirc 0/\bigcirc 1/\bigcirc 3$				
	Es sei $n = 9$. Was ist $\overline{4444}^{4445}$?	$\bigcirc 4/\bigcirc 7/\bigcirc 1$				
	Was ist die letzte Dezimalziffer von 2 ¹⁰⁰ ?	$\bigcirc 1/\bigcirc 3/\bigcirc 6$				
	Es sei $n = 101$. Was ist $\overline{3}^{101}$?	$\bigcirc 2/\bigcirc 3/\bigcirc 99$				
	Es sei $n = 37$. Was ist $\overline{17}^2$?	\bigcirc 10 / \bigcirc 20 / \bigcirc 30				
3	Beantworten Sie die folgenden Fragen über Restklassenringe. Mit φ se	i die Eulersche Phi-				
	Funktion bezeichnet.					
	Ist $\overline{527}$ in $\mathbb{Z}/1147\mathbb{Z}$ invertierbar?	◯ Ja / ◯ Nein				
	Es sei $2 \leq n \in \mathbb{N}$. Ist es richtig, dass genau dann $\varphi(n) = n-1$ gilt, wenn	◯ Ja / ◯ Nein				
	n eine Primzahl ist?					
	Sei $a \in \mathbb{Z}/n\mathbb{Z}$ (multiplikativ) invertierbar. Ist dann auch a^2 invertierbar?	◯ Ja / ◯ Nein				
	Was ist $\varphi(36)$?	\bigcirc 8 / \bigcirc 10 / \bigcirc 12				
	Welche der folgenden Zahlen ist in $\mathbb{Z}/37\mathbb{Z}$ ein Vertreter für das (multiplika-	\bigcirc 7 / \bigcirc 8 / \bigcirc 9				
	tive) Inverse von $\overline{16}$?					
4	Sei R ein beliebiger Ring mit Nullelement 0 und Einselement 1 .					
	Eine Aussage, die für jeden Ring gilt, gilt auch für jeden Körper.	◯ Ja / ◯ Nein				
	R hat genau dann nur ein Element, wenn $0 = 1$ gilt.	◯ Ja / ◯ Nein				
	Es gibt einen Ringisomorphismus von \mathbb{Z} nach $\mathbb{Z}/0\mathbb{Z}$.	○ Ja / ○ Nein				
	${\cal R}$ ist ein Körper, wenn ${\cal R}$ mindestens zwei Elemente hat, ${\cal R}$ kommutativ ist	◯ Ja / ◯ Nein				
	und es zu jedem Element $0 \neq r \in R$ ein $s \in R$ mit $rs = 1$ gibt.					
	Für $n \in \mathbb{N}$ ist $\mathbb{Z}/n\mathbb{Z}$ genau dann ein Körper, wenn es keine Nullteiler gibt	◯ Ja / ◯ Nein				
	(das heißt, wenn es keine $x, y \neq \overline{0}$ mit $xy = \overline{0}$ gibt).					
Di	e folgenden Aufgaben sind schriftlich zu bearbeiten.					

- In dieser Aufgabe sei R ein kommutativer Ring, in dem $0 \neq 1$ gilt. Wir betrachten die Menge $R^{n \times n}$ der $n \times n$ -Matrizen mit Einträgen in R. Sie bildet mit komponentenweiser Addition und Matrizenmultiplikation einen Ring (siehe Vorlesung nächste Woche). Ein **Nullteiler** in einem Ring ist ein Element $x \neq 0$, zu dem ein Element $y \neq 0$ existiert mit $x \cdot y = 0$.
 - (i) Zeigen Sie, dass im Fall n=2 ein Element $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in R^{2\times 2}$ genau dann eine Einheit in $R^{2\times 2}$ ist, wenn ad-bc eine Einheit in R ist.
 - (ii) Wieviele Elemente hat $GL_2(\mathbb{F}_2)$, die Gruppe der invertierbaren 2×2 -Matrizen mit Einträgen im Körper \mathbb{F}_2 mit 2 Elementen?
 - (iii) Der Ring $R^{n \times n}$ ist für $n \ge 2$ nicht kommutativ.
 - (iv) Der Ring $R^{n \times n}$ hat für $n \ge 2$ Nullteiler.
- 6 Wir betrachten die Gruppe $(\mathbb{Z}, +)$ der ganzen Zahlen mit der Addition als Verknüpfung.
 - (i) Bestimmen Sie alle Untergruppen von \mathbb{Z} .
 - (ii) Welche Untergruppen sind ineinander enthalten?
 - (iii) Wieviele endliche Untergruppen gibt es?
 - (iv) Welche Untergruppen sind maximal, das heisst welche Untergruppen sind echte Untergruppen $M \lneq \mathbb{Z}$, so dass es keine echte Zwischengruppe $M \lneq N \lneq \mathbb{Z}$ gibt?

Abgabe bis spätestens am Freitag, dem 30. November 2001, um 12 Uhr im Zettelkasten am Lehrstuhl D für Mathematik.

Übungsblatt Nr. 7, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß

1	Entscheiden Sie jeweils, ob die angegebene Abbildung zwischen den K -Vektorräumen V und W linear ist.				
	$K:=\mathbb{R}, V:=\mathbb{R}^{\mathbb{R}}, W:=\mathbb{R}^{\mathbb{R}}, \varphi: f\mapsto f-f$	○ Ja / ○ Nein			
	$K := \mathbb{Q}, V := \mathbb{Q}, W := \mathbb{Q}, \varphi : x \mapsto 3x$	○ Ja / ○ Nein			
	$K := \mathbb{F}_2, V := \mathbb{F}_2, W := \mathbb{F}_2, \varphi : x \mapsto x^2$	◯ Ja / ◯ Nein			
	$K:=\mathbb{R}, V:=\mathbb{R}^{1\times 2}, W:=\mathbb{R}, \varphi:(x_1,x_2)\mapsto x_1+x_2$	◯ Ja / ◯ Nein			
	$K:=\mathbb{R}, V:=K^{2\times 3}, W:=K^{1\times 3}, \varphi:M\mapsto (1,2)\cdot M$	○ Ja / ○ Nein			
2	Welche der folgenden Aussagen über lineare Abbildungen sind wahr?				
	Es gibt eine Abbildung $\varphi: \mathbb{F}_2 \to \mathbb{F}_2$, die kein \mathbb{F}_2 -Homomorphismus ist.	○ Ja / ○ Nein			
	Ist die Verkettung zweier Abbildungen zwischen K -Vektorräumen linear,	○ Ja / ○ Nein			
	dann ist mindestens eine der beiden Abbildungen linear.				
	Jeder \mathbb{R} -Homomorphismus von \mathbb{R} nach \mathbb{R}^2 ist injektiv.	○ Ja / ○ Nein			
	Es gibt zwei lineare Abbildungen, deren Verkettung zwar definiert aber nicht linear ist.	◯ Ja / ◯ Nein			
	Die Umkehrabbildung einer bijektiven linearen Abbildung ist linear.	○ Ja / ○ Nein			
3	Es seien A und B Matrizen über einem Körper K , so dass $A \cdot B$ definiert ist. Aussagen sind wahr?	Welche der folgenden			
	Die Zeilen von $A \cdot B$ sind Linearkombinationen der Zeilen von B .	◯ Ja / ◯ Nein			
	Es gilt $A \cdot B^t = (B \cdot A^t)^t$, falls die rechte Seite definiert ist.	◯ Ja / ◯ Nein			
	Sind A und B in $GL_n(K)$, dann gilt $A \cdot (A^t \cdot B^t) \cdot (A^{-1} \cdot B^{-1})^t = A$.	◯ Ja / ◯ Nein			
	Jede Zeile von $A \cdot B$ liegt im Zeilenraum von B .	◯ Ja / ◯ Nein			
	Die Spalten von $A \cdot B$ sind Linearkombinationen der Spalten von A .	○ Ja / ○ Nein			
4	Welche der folgenden Mengen sind Untervektorräume in den jewei Vektorräumen?	ils angegebenen \mathbb{R} -			
	$U := \{ A \in \mathbb{R}^{n \times n} \mid A = A^t \} \subseteq \mathbb{R}^{n \times n}$	◯ Ja / ◯ Nein			
	$U:=\left\{f\in\mathbb{R}^{\mathbb{R}}\mid f ext{ ist beschränkt} ight\}\subseteq\mathbb{R}^{\mathbb{R}}$	◯ Ja / ◯ Nein			
	$U := \{(a_{ij}) \in \mathbb{R}^{3 \times 4} \mid a_{11} + a_{12} = 0\} \subseteq \mathbb{R}^{3 \times 4}$	◯ Ja / ◯ Nein			
	$U := \{ (a_{ij}) \in \mathbb{R}^{4 \times 3} \mid a_{11} \cdot a_{22} = 0 \} \subseteq \mathbb{R}^{4 \times 3}$	○ Ja / ○ Nein			
	$U:=ig\{f\in\mathbb{R}^\mathbb{R}\mid f ext{ ist monoton}ig\}\subseteq\mathbb{R}^\mathbb{R}$	○ Ja / ○ Nein			
Di	e folgenden Aufgaben sind schriftlich zu bearbeiten.				
5	Es seien K ein Körper und M und N zwei Matrizen aus $K^{m \times n}$. Zeigen Sie:				
	(i) Wenn N aus M durch elementare Zeilenumformungen hervorgeht, dann ist der Zeilenraum von M gleich dem Zeilenraum von N .				
	(ii) Wenn M in Zeilenstufenform ist und N aus M hervorgeht, indem eine Zeile, in der nicht nur Nullen stehen, mit 0 multipliziert wird, dann ist der Zeilenraum von M verschieden vom Zeilenraum von N .				

Sei K ein Körper. Wir betrachten die Menge $K^{\mathbb{N}_0}$ der Abbildungen von \mathbb{N}_0 nach K. Für $f,g\in K^{\mathbb{N}_0}$ und $a\in K$ definieren wir:

$$f + g: \mathbb{N}_0 \longrightarrow K, \quad n \mapsto f(n) + g(n)$$

 $a \cdot f: \mathbb{N}_0 \longrightarrow K, \quad n \mapsto af(n)$

Wir bezeichnen mit $K^{(\mathbb{N}_0)}$ die Teilmenge der Abbildungen $f \in K^{\mathbb{N}_0}$, für die es nur endlich viele $n \in \mathbb{N}_0$ mit $f(n) \neq 0$ gibt.

Schließlich definieren wir für $f,g\in K^{(\mathbb{N}_0)}$ die Verknüpfung $f\star g\in K^{(\mathbb{N}_0)}$, so dass für $n\in\mathbb{N}_0$ gilt $(f\star g)(n)=\sum_{a,b\in\mathbb{N}_0,a+b=n}f(a)g(b).$

- (i) Zeigen Sie, dass $K^{\mathbb{N}_0}$ bezüglich der oben angegebenen Addition und Skalarmultiplikation ein K-Vektorraum ist.
- (ii) Zeigen Sie, dass $K^{(\mathbb{N}_0)}$ ein Untervektorraum von $K^{\mathbb{N}_0}$ ist, der nicht von endlich vielen Elementen erzeugt wird.
- (iii) Zeigen Sie, dass \star tatsächlich eine Verknüpfung auf $K^{(\mathbb{N}_0)}$ definiert. Für welches Element, das wir mit X^0 bezeichnen wollen, gilt $X^0 \star f = f$ für alle $f \in K^{(\mathbb{N}_0)}$?
- (iv) Sei $X: \mathbb{N}_0 \longrightarrow K$ die Abbildung mit $1 \mapsto 1$ und $n \mapsto 0$ für $n \neq 1$. Beginnend mit dem Element X^0 aus Teil (iii) definieren wir $X^i \in K^{(\mathbb{N}_0)}$ rekursiv als $X^{i-1} \star X$ für i > 0. Zeigen Sie, dass jedes $f \in K^{(\mathbb{N}_0)}$ eine eindeutige Linearkombination von (X^0, X^1, \dots, X^n) für ein geeignetes $n \in \mathbb{N}_0$ ist.
- (v) Zeigen Sie, dass $(K^{(\mathbb{N}_0)}, +, \star)$ ein Ring ist.

Anmerkung: Der Ring $K^{(\mathbb{N}_0)}$ wird oft mit K[X] bezeichnet und heißt *Polynomring* über K.

Abgabe bis spätestens am Freitag, dem 7. Dezember 2001, um 12 Uhr im Zettelkasten am Lehrstuhl D für Mathematik.

Übungsblatt Nr. 8, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß

1	Es seien K ein Körper, V und W endlich-erzeugte Vektorräume über K und $\varphi:V\to W$ eine K -lineare Abbildung. In dieser Aufgabe steht das Wort "Basis" immer für "geordnete Basis". Welche der folgenden Aussagen sind richtig?				
	Wenn für jede Basis (b_1, \ldots, b_n) von V gilt, dass $(\varphi(b_1), \ldots, \varphi(b_n))$ eine Basis von W ist, dann ist φ ein Isomorphismus.	○ Ja / ○ Nein			
	Ist (b_1, b_2, b_3) eine Basis von V und φ surjektiv, dann ist $(\varphi(b_1), \varphi(b_2), \varphi(b_3))$ eine Basis von W .	◯ Ja / ◯ Nein			
	Sind b_1 und b_2 in V und ist $(\varphi(b_1), \varphi(b_2))$ linear unabhängig, dann ist (b_1, b_2) linear unabhängig.	○ Ja / ○ Nein			
	Sind b_1 und b_2 in V und ist (b_1, b_2) linear unabhängig und φ injektiv, dann ist $(\varphi(b_1), \varphi(b_2))$ linear unabhängig.	○ Ja / ○ Nein			
	Wenn φ injektiv ist, dann ist $\dim V \leq \dim W$.	◯ Ja / ◯ Nein			
2	Sind die folgenden Teilmengen der angegebenen ℝ-Vektorräume linear unab	hängig?			
	$\{1,\pi\}\subseteq\mathbb{R}$	○ Ja / ○ Nein			
	$\{g\} \cup \{f_i \mid i \in \mathbb{N}\} \subseteq \mathbb{R}^{\mathbb{N}}$, wobei $g(n) = 1$ für alle $n \in \mathbb{N}$, $f_i(i) = 1$ für	○ Ja / ○ Nein			
	$i \in \mathbb{N} \text{ und } f_i(n) = 0 \text{ für } i, n \in \mathbb{N}, i \neq n.$				
	$\{(-1,0,0)\}\subseteq\mathbb{R}^{1\times3}$	○ Ja / ○ Nein			
	$\{(2,2,2),(1,1,0),(0,0,3)\}\subseteq \mathbb{R}^{1\times 3}$	○ Ja / ○ Nein			
	$\{x \mapsto \sin(3x), x \mapsto \sin(5x), x \mapsto \sin(7x)\} \subseteq C^{\infty}(\mathbb{R})$	○ Ja / ○ Nein			
3	Es seien K ein Körper und $\varphi:V\to W$ und $\psi:W\to V$ lineare Abbildungen zwischen den				
	K-Vektorräumen V und W . Welche der folgenden Aussagen sind wahr?				
	$\operatorname{Kern} (\psi \circ \varphi) \subseteq \operatorname{Kern} \psi$	◯ Ja / ◯ Nein			
	$\operatorname{Bild}\varphi\subseteq\operatorname{Bild}\left(\psi\circ\varphi\right)$	○ Ja / ○ Nein			
	$\operatorname{Kern} (\psi \circ \varphi) = \operatorname{Bild} (\varphi \circ \psi)$	◯ Ja / ◯ Nein			
	$\operatorname{Bild} \psi \subseteq \operatorname{Bild} (\psi \circ \varphi)$	◯ Ja / ◯ Nein			
	$\operatorname{Kern} \varphi \subseteq \operatorname{Kern} (\psi \circ \varphi)$	◯ Ja / ◯ Nein			
4	Sei V ein endlich-erzeugter Vektorraum und $X \subseteq Y \subseteq V$. Dann gilt:				
	Wenn X eine Basis von $\langle X \rangle$ ist, so gibt es eine Teilmenge $Y' \subseteq Y$ mit	◯ Ja / ◯ Nein			
	$X \subseteq Y'$, die eine Basis von $\langle Y \rangle$ ist.				
	Ist X linear unabhängig, so ist auch Y linear unabhängig.	○ Ja / ○ Nein			
	Ist X ein Erzeugendensystem von V , so ist auch Y ein Erzeugendensystem	○ Ja / ○ Nein			
	von V .				
	Ist X eine Basis von V , so ist auch Y eine Basis von V .	○ Ja / ○ Nein			
	Ist X linear abhängig, so ist auch Y linear abhängig.	○ Ja / ○ Nein			
Di	e folgenden Aufgaben sind schriftlich zu bearbeiten.				

- 5 | Es sei K ein Körper und V ein endlich-erzeugter K-Vektorraum.
 - (i) Zeigen Sie, dass jedes endliche Erzeugendensystem $\{v_1, v_2, \dots, v_n\} \subseteq V$ von V eine Teilmenge besitzt, die eine Basis von V ist.
 - (ii) Geben Sie ein Verfahren (Algorithmus) an, mit dem explizit aus einem n-Tupel von Zeilen aus $K^{1\times m}$ eine Basis des Raums gewählt werden kann, der von den Zeilen aufgespannt wird.
 - (iii) Sei nun $K = \mathbb{Q}$. Wählen Sie aus der Menge

$$M:=\{(1,0,3,2,1),(3,2,-1,-2,1),(1,2,-7,-6,-1),(2,2,2,2,2)\}\subseteq\mathbb{Q}^{1\times 5}$$

eine Teilmenge aus, die eine Basis von $\langle M \rangle$ ist.

- 6 Es sei K ein Körper und V ein endlich-erzeugter K-Vektorraum. Weiter seien U und W Untervektorräume von V. Zeigen Sie:
 - (i) Es gilt $U\cap W=\{0\}$ und U+W=V genau dann, wenn für jede geordnete Basis (u_1,\ldots,u_k) von U und jede geordnete Basis (w_1,\ldots,w_m) von W das Tupel $(u_1,\ldots,u_k,w_1,\ldots,w_m)$ eine geordnete Basis von V ist.
 - (ii) Es gilt:

$$\dim_K(U+W) = \dim_K U + \dim_K W - \dim_K (U \cap W).$$

Hinweis: Zählen Sie Vektoren in geeigneten Basen.

Abgabe bis spätestens am Freitag, dem 14. Dezember 2001, um 12 Uhr im Zettelkasten am Lehrstuhl D für Mathematik.

Übungsblatt Nr. 9, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß

1	Es seien die folgenden Matrizen über $\mathbb Q$ gegeben:	
	$A := \begin{pmatrix} 0 & 0 & -1 & 0 \\ 3 & 0 & 1 & -7 \\ 0 & 1 & 0 & -8 \\ -1 & 0 & 0 & 2 \end{pmatrix} , B := \begin{pmatrix} 1 & 2 & 3 & 1 \\ -1 & 2 & -1 & 2 \\ 3 & -2 & 5 & -3 \end{pmatrix} und C := \begin{pmatrix} 1 & 2 & 3 & 1 \\ -1 & 2 & -1 & 2 \\ 3 & -2 & 5 & -3 \end{pmatrix}$	$ \begin{pmatrix} 4 & 1 & 0 & -39 \\ 2 & -5 & 1 & -8 \\ -3 & 5 & -5 & -32 \end{pmatrix} $
	Berechnen Sie jeweils den Rang der angegebenen Matrix.	T
	$C^t - A^t B^t$	
	C	
	$AC^t + B^t$	
	A	
	BA-C	
2	Es sei K ein Körper, $A \in K^{m \times n}$ mit $m, n \in \mathbb{N}$ und $b \in K^{m \times 1}$. Sind die folg das lineare Gleichungssystem $Ax = b$ richtig?	enden Aussagen über
	Wenn es ein $c \in K^{m \times 1}$ gibt, so dass $Ax = c$ eine eindeutige Lösung hat, dann hat $Ax = b$ auch eine eindeutige Lösung.	◯ Ja / ◯ Nein
	Ax = b ist genau dann unlösbar, wenn $rang(A) = rang(A, b) - 1$ ist.	◯ Ja / ◯ Nein
	Falls $m = n$ ist und A nicht invertierbar ist, dann gibt es $c \in K^{m \times 1}$, so dass	○ Ja / ○ Nein
	Ax = c unlösbar ist.	
	Für $c \in K^{m \times 1}$ gibt es eine Bijektion zwischen der Lösungsmenge von $Ax = b$ und der von $Ax = c$.	○ Ja / ○ Nein
	Für $c=0$ hat $Ax=c$ mindestens $ n-m $ (Absolutbetrag) Lösungen.	○ Ja / ○ Nein
3	Es sei K ein endlicher Körper mit q Elementen. Bestimmen Sie jeweils die in den folgenden Mengen.	Anzahl der Elemente
	Die Lösungsmenge eines linearen Gleichungssystems $Ax=0$, wobei $A\in K^{3\times 2}$ vom Rang 1 ist und $q=2$.	
	Die Menge der K -linearen Abbildungen von K^2 nach K für $q=17$.	
	Die Menge der 1-dimensionalen Untervektorräume von K^3 für $q=5$.	
	K^2 für $q=13$.	
	Die Menge der nicht-invertierbaren Matrizen in $K^{2\times 2}$ für $q=3$.	
4	Alle vorkommenden Matrizen haben Einträge in einem Körper K . Sind die wahr?	folgenden Aussagen
	Der Spaltenrang einer Matrix ist gleich der Dimension ihres Zeilenraums.	◯ Ja / ◯ Nein
	Für $0 \neq c \in K$ und eine Matrix A haben A und $c \cdot A$ den gleichen Rang.	○ Ja / ○ Nein
	Der Zeilenrang einer Matrix ist gleich der Dimension ihres Spaltenraums.	◯ Ja / ◯ Nein
	Die Dimension des Lösungsraums eines homogenen linearen Gleichungs-	◯ Ja / ◯ Nein
	systems $Ax=0$ ist gleich der Differenz der Anzahl der Unbekannten und dem Rang der Matrix A .	

	Es sei A eine quadratische Matrix. Dann hat das lineare Gleichungssystem $Ax = 0$ genau dann eine eindeutige Lösung, wenn die Matrix $-A$ invertierbar ist.					
Di	e folgenden Aufgaben sind schriftlich zu bearbeiten.					
5	W nicht der Nullvektorraum.					
	(i) Zeigen Sie, dass ein Tupel (v_1, \ldots, v_n) (mit $n \in \mathbb{N}$) von Vektoren aus V genau dann eine geordnete Basis von V ist, wenn folgendes gilt: Zu jedem Tupel (w_1, \ldots, w_n) von Vektoren aus W gibt es genau eine lineare Abbildung φ von V nach W mit $\varphi(v_i) = w_i$ für $1 \le i \le n$.					
	(ii) Sei K nun ein endlicher Körper mit q Elementen und $\dim_K V=n$. Bestimmen Sie die Anzahl der geordneten Basen von V .					
	(iii) Sei K wie in (ii). Bestimmen Sie $ GL_n(K) $.					
6	Sei K ein Körper, $A \in K^{k \times m}$ und $B \in K^{m \times n}$.					
	(i) Sei $m = 1$. Berechnen Sie rang $(A \cdot B)$.					
	(ii) Zeigen Sie: $\operatorname{rang}(A \cdot B) \leq \min\{\operatorname{rang} A, \operatorname{rang} B\}$.					
	(iii) Geben Sie ein Beispiel an, in dem $\operatorname{rang}(A \cdot B) < \min\{\operatorname{rang} A, \operatorname{rang} B\}$ ist.					

Abgabe bis spätestens am Freitag, dem 21. Dezember 2001, um 12 Uhr im Zettelkasten am Lehrstuhl D für Mathematik.

Übungsblatt Nr. 10, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß

1	Es sei $V:=\mathbb{Q}^{2\times 3}$ der \mathbb{Q} -Vektorraum der 2×3 -Matrizen, $W:=\mathbb{Q}^{2\times 2}$ de 2×2 -Matrizen und $\varphi:V\to W$ die folgende \mathbb{Q} -lineare Abbildung:	er Q-Vektorraum der				
$arphi: V \longrightarrow W , M \longmapsto M \cdot A , ext{wobei } A = \left(egin{array}{ccc} 1 & -3 \\ 2 & -2 \\ 3 & -1 \end{array} ight) \in \mathbb{Q}^{3 imes 2}.$						
	Weiter seien die geordneten Basen					
$\mathcal{B} := \left(\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right), \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right), \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right), \left(\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right), \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right), \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right)$						
	$\mathcal{C} := \left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{array} \right), \left(\begin{array}{cc} 0 & \frac{1}{2} \\ -\frac{1}{2} & 0 \end{array} \right) \right)$					
	von W gewählt. Berechnen Sie die Abbildungsmatrix $M_{\mathcal{C}}^{\mathcal{B}}(\varphi)$ von φ bezüglich	h dieser beiden Basen				
	und geben Sie die verlangten Einträge an.					
	Der Eintrag in der 4. Zeile und der 5. Spalte von $M_{\mathcal{C}}^{\mathcal{B}}(\varphi)$ lautet					
	Der Eintrag in der 2. Zeile und der 2. Spalte von $M_{\mathcal{C}}^{\mathcal{B}}(\varphi)$ lautet					
	Der Eintrag in der 3. Zeile und der 2. Spalte von $M_{\mathcal{C}}^{\mathcal{B}}(\varphi)$ lautet					
	Der Eintrag in der 1. Zeile und der 3. Spalte von $M_{\mathcal{C}}^{\mathcal{B}}(\varphi)$ lautet					
	Der Eintrag in der 4. Zeile und der 6. Spalte von $M_{\mathcal{C}}^{\mathcal{B}}(\varphi)$ lautet					
2	lineare Abbildungen. Sind die folgenden Aussagen richtig?					
	Sind $v_1 \neq v_2$ Elemente von V und gilt $\psi(\varphi(v_1)) = \psi(\varphi(v_2)) \neq 0$, dann ist $(\varphi(v_1), \varphi(v_2))$ in W linear abhängig.	◯ Ja / ◯ Nein				
	Sind v_1 und v_2 Elemente von V mit $v_1 = v_2$ und gilt $\psi(\varphi(v_1)) = \psi(\varphi(v_2)) = 0$, dann ist $(\varphi(v_1), \varphi(v_2))$ in W linear unabhängig.	◯ Ja / ◯ Nein				
	Sind $v_1 \neq v_2$ Elemente von V und gilt $\varphi(v_1) = \varphi(v_2)$ und $\psi(\varphi(v_1)) \neq 0$, dann ist (v_1, v_2) in V linear unabhängig.	◯ Ja / ◯ Nein				
	Sind $v_1 \neq v_2$ Elemente von V und gilt $\varphi(v_1) = \varphi(v_2)$, dann ist (v_1, v_2) in V linear abhängig.	○ Ja / ○ Nein				
	Sind $v_1 \neq v_2$ Elemente von V und gilt $\varphi(v_1) = \varphi(v_2) \neq 0$, dann ist (v_1, v_2) in V linear unabhängig.	○ Ja / ○ Nein				
3	Seien V und W Vektorräume über einem Körper K und $\varphi \in \operatorname{Hom}_K(V, W)$. Sasen von V und $\mathcal{C}, \mathcal{C}'$ geordnete Basen von W . Sind die folgenden Aussage					
	Falls \mathcal{B} und \mathcal{B}' aus den gleichen Elementen von V gebildet werden, so sind alle Einträge der zugehörigen Basiswechselmatrix von V entweder 0 oder 1 .	○ Ja / ○ Nein				
	Es gilt $M_{\mathcal{C}}^{\mathcal{B}'}(\varphi) = M_{\mathcal{C}'}^{\mathcal{C}}(\mathrm{id}_W) M_{\mathcal{C}}^{\mathcal{B}}(\varphi) M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{id}_V).$	○ Ja / ○ Nein				
	Jede Basiswechselmatrix von W ist quadratisch und invertierbar.	◯ Ja / ◯ Nein				
	Es gibt eine invertierbare Abbildung $\psi \in \operatorname{Hom}_K(V, V)$, so dass $M_{\mathcal{B}}^{\mathcal{B}}(\psi) = M_{\mathcal{B}'}^{\mathcal{B}'}(\psi)$ ist.	◯ Ja / ◯ Nein				

	Jede Matrix $T \in K^{n \times n}$ ist Basiswechselmatrix von V .	○ Ja / ○ Nein				
4	Es seien V und W zwei endlich-dimensionale Vektorräume über einem Körper K und $\varphi:V\to W$					
	eine lineare Abbildung. Weiter sei $\mathcal{B}:=(v_1,\ldots,v_n)$ eine Basis von V und $\mathcal{C}:=(w_1,\ldots,w_m)$					
	eine Basis von W und $M_{\mathcal{C}}^{\mathcal{B}}(\varphi)$ die Matrix von φ bezüglich der Basen \mathcal{B} und \mathcal{C}					
	Ist $\mathcal{B}' = (v_n, v_{n-1}, \dots, v_1)$, dann erhält man $M_{\mathcal{C}}^{\mathcal{B}'}(\varphi)$ aus $M_{\mathcal{C}}^{\mathcal{B}}(\varphi)$, indem	◯ Ja / ◯ Nein				
	man dieselben Spalten in umgekehrter Reihenfolge schreibt.					
	Ist $\mathcal{B}' = (v_2, v_1, v_3, \dots, v_n)$, dann erhält man $M_{\mathcal{C}}^{\mathcal{B}'}(\varphi)$ aus $M_{\mathcal{C}}^{\mathcal{B}}(\varphi)$, indem	○ Ja / ○ Nein				
	man die ersten beiden Spalten vertauscht.					
	Ist $C' = (w_1 + w_2, w_2, w_3, \dots, w_m)$, dann erhält man $M_{C'}^{\mathcal{B}}(\varphi)$ aus $M_{\mathcal{C}}^{\mathcal{B}}(\varphi)$, indem man die erste Zeile von der zweiten subtrahiert.	○ Ja / ○ Nein				
	Ist $\mathcal{B}'=(v_1,v_2-v_1,v_3,\ldots,v_n)$, dann erhält man $M_{\mathcal{C}}^{\mathcal{B}'}(\varphi)$ aus $M_{\mathcal{C}}^{\mathcal{B}}(\varphi)$,	○ Ja / ○ Nein				
	indem man die erste Spalte von der zweiten subtrahiert.					
	Ist $C' = (w_2, w_1, w_3, \dots, w_m)$, dann erhält man $M_{C'}^{\mathcal{B}}(\varphi)$ aus $M_{C}^{\mathcal{B}}(\varphi)$, indem	○ Ja / ○ Nein				
	man die ersten beiden Spalten vertauscht.					
Di	e folgenden Aufgaben sind schriftlich zu bearbeiten.					
5	Sei K ein Körper und seien V , W endlich-dimensionale K -Vektorräume und $\varphi \in \operatorname{Hom}_K(V, W)$.					
	Zeigen Sie, dass es ein $r \in \mathbb{N}_0$ gibt mit $r \leq \min\{\dim_K(V), \dim_K(W)\}$, sowie (geordnete) Basen					
	\mathcal{B} von V und \mathcal{C} von W , so dass die Abbildungsmatrix $M_{\mathcal{C}}^{\mathcal{B}}(\varphi)$ die folgende Block-Form hat:					
	$(E \mid 0)$					
	$\begin{pmatrix} E_r & 0 \\ \hline 0 & 0 \end{pmatrix}$					
6	Seien V und W Vektorräume über \mathbb{R} mit Basen $\mathcal{B} = (b_1, b_2, b_3, b_4, b_5)$ be					
	$(c_1, c_2, c_3, c_4, c_5)$. Wir betrachten die lineare Abbildung $\varphi: V \to W$, für die gilt:					
	$\varphi(b_1) = c_1 - c_2$					
	$\varphi(b_2) = c_2 - c_3$					
	$\varphi(b_3) = c_3 - c_4$					
	$\varphi(b_4) = \sqrt{5}c_1 - \sqrt{5}c_2 + c_4 - c_5$					
	$\varphi(b_5) = -\sqrt{5}c_1 + \sqrt{5}c_2 + c_5$					
	Zeigen Sie, dass φ ein Isomorphismus ist und bestimmen Sie die Abbildungsmatrix der Umkehr-					
	abbildung φ^{-1} bezüglich der oben angegebenen Basen.					
	Hier ist noch eine Weihnachtsaufgabe. Ihre Bearbeitung gibt keine Punkte. Aber hier haben Sie die					
M	Möglichkeit, den bisherigen Vorlesungsstoff mal besonders praxisnah zu verwenden.					

- 7 | Sei K ein Körper und $A \in K^{n \times n}$ eine invertierbare Matrix.
 - (i) (LR-**Zerlegung**) Zeigen Sie, dass die Matrix A in der Form A = LR geschrieben werden kann, wobei $L, R \in K^{n \times n}$ sind, L eine untere Dreiecksmatrix und R eine obere Dreiecksmatrix ist, und die Diagonaleinträge von L alle gleich Eins sind. (Tipp: Denken Sie an eine eingeschränkte Menge von Zeilenumformungen.)
 - (ii) Mein alter programmierbarer Taschenrechner (TI59) konnte zu einer Matrix aus reellen Fließkommazahlen wie in (i) die LR-Zerlegung ausrechnen und damit die gegebene Matrix invertieren. Hierbei wurden nur etwa n^2+n+5 Speicherplätze für Zahlen benötigt, die Zerlegung wurde also fast "in place" gemacht. Beschreiben Sie einen Algorithmus, der dies ermöglicht. (Der Rechner hatte 100 Speicherplätze und konnte 9×9 -Matrizen in 12 Minuten invertieren.)

Abgabe bis spätestens am Freitag, dem 11. Januar 2002, um 12 Uhr im Zettelkasten am Lehrstuhl D für Mathematik.

Übungsblatt Nr. 11, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß

1	Berechnen Sie die Determinanten der folgenden Matrizen mit Einträgen aus (Die Elemente von \mathbb{F}_{11} werden also durch ihre kleinsten nicht-negativen Re	
	schrieben.)	
	(3 2 5 \	
	10 1 9	
	$\left(\begin{array}{ccc} 2 & 3 & 3 \end{array}\right)$	
	$\begin{pmatrix} 4 & 5 \end{pmatrix}$	
	$\begin{pmatrix} 1 & 9 & 2 \end{pmatrix}$	
	0 2 7	
	0 0 3 /	
	$\left(\begin{array}{cc} x & x+1 \\ x+2 & x+3 \end{array}\right)$	
	$\begin{pmatrix} x+2 & x+3 \end{pmatrix}$	
	$\left(\begin{array}{cccc} 2 & 3 & 0 & 0 \\ 5 & 1 & 2 & 4 \end{array}\right)$	
	$\left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 5 & 6 & 0 & 2 \end{array}\right)$	
2	Berechnen Sie das Signum der folgenden Permutationen aus der symmetrisch	nen Gruppe S_{12} .
	(1 2 3 4 5 6 7 8 9 10 11 12)	\bigcirc +1 / \bigcirc 1
	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	○ +1 / ○ -1
	1 2 3 4 5 6 7 8 9 10 11 12	○ +1 / ○ -1
	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u> </u>
	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	○ +1 / ○ -1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O 117 O 1
	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	11 6 10 3 12 4 5 2 9 1 8 7	
	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	() +1 / () -1
	5 7 10 2 3 11 12 8 6 4 9 1	
3	Es sei σ die folgende Permutation von 9 Punkten: $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 9 & 4 & 1 & 2 & 6 \end{pmatrix}$	
	In den folgenden Fragen ist jeweils ein Produkt von Transpositionen angeg	
	Stelle die Variable i anstelle einer der Ziffern von 1 bis 9 steht. Tragen Sie ir	das Antwortfeld die
	Ziffer ein, die man für i einsetzen muss, damit das Produkt gleich σ ist.	
	$(1\ 2)\ (2\ 5)\ (3\ 9)\ (i\ 6)\ (7\ 8)\ (9\ 6)\ (1\ 6)$	
	$(i\ 2)\ (3\ 7)\ (2\ 5)\ (1\ 6)\ (1\ 7)\ (3\ 9)\ (8\ 9)$	
	$(1\ 2)\ (1\ 3)\ (2\ 5)\ (i\ 8)\ (8\ 7)\ (7\ 6)\ (3\ 6)$	
	(45) (15) (98) (38) (62) (87) (24) (7i) (14)	
	$(9\ 8)\ (2\ 5)\ (3\ 8)\ (1\ 8)\ (8\ 7)\ (5\ 7)\ (6\ i)$	

4	Es sei K ein Körper und $M, N \in K^{n \times n}$ für ein $n \in \mathbb{N}$. Die Einträge der Matrix M seien mit $m_{i,j}$ für $(1 \le i, j \le n)$ bezeichnet. Sind die folgenden Aussagen über Determinanten richtig?		
	Sind zwei Zeilen von N gleich, so ist det $N = 0$.	○ Ja / ○ Nein	
	Ist M eine untere Dreiecksmatrix, dann ist die Determinante von M gleich dem Produkt der Diagonalelemente.	○ Ja / ○ Nein	
	Ist $m_{i,j} = 0$ für $i + j > n + 1$, dann ist det $M = \prod_{i=1}^n m_{i,n+1-i}$.	○ Ja / ○ Nein	
	Enthält M nur die Zahlen 0 und 1 , dann ist die Determinante von M auch entweder 0 oder 1 .	○ Ja / ○ Nein	
	Es gilt $(\det M) \cdot (\det N) = \det(M \cdot N)$.	○ Ja / ○ Nein	
Die folgenden Aufgaben sind schriftlich zu bearbeiten.			
		11 61 1 1 1	

5 Sei für einen kommutativen Ring R die Abbildung $D: R^{n\times n} \to R$, durch die folgende Formel gegeben:

$$D((a_{ij})) = \sum_{\pi \in S_n} sgn(\pi) a_{\pi(1),1} \cdots a_{\pi(n),n}$$

- (i) Zeigen Sie, dass diese Abbildung multilinear ist (siehe Punkt (3.8)(1) und den Beweis von Satz 3.11 aus der Vorlesung).
- (ii) Wie ändert sich die Determinante bei den einzelnen elementaren Umformungen einer Matrix?
- 6 Es sei K ein Körper und $n \in \mathbb{N}$ mit $n \geq 2$. Zeigen Sie, dass für beliebige Zahlen $a_1, a_2, \ldots, a_n \in K$ gilt:

$$\det \begin{pmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \cdots & a_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_n & a_n^2 & \cdots & a_n^{n-1} \end{pmatrix} = \prod_{1 \le i < j \le n} (a_j - a_i)$$

Bemerkung: Diese Determinante heißt Vandermonde'sche Determinante.

Abgabe bis spätestens am Freitag, dem 18. Januar 2002, um 12 Uhr im Zettelkasten am Lehrstuhl D für Mathematik.

Übungsblatt Nr. 12, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß

1	die folgenden Aussagen richtig?				
	Jedes Polynom $0 \neq f \in K[X]$ hat nur endlich viele Nullstellen.	○ Ja / ○ Nein			
	Zwei verschiedene normierte Polynome in $K[X]$ vom Grad 1 sind teilerfremd.	○ Ja / ○ Nein			
	In $K[X]$ gibt es irreduzible Polynome.	○ Ja / ○ Nein			
	Es sei $0 \neq a \in K$. Dann gilt: Zwei Polynome $f, g \in K[X]$ sind genau dann teilerfremd in $K[X]$, wenn es Elemente $\lambda, \mu \in K[X]$ gibt mit $\lambda f + \mu g = a$.	○ Ja / ○ Nein			
	Jedes Polynom hat eine Nullstelle in K .	○ Ja / ○ Nein			
2	Sind die folgenden Aussagen über Polynome richtig?				
	In $\mathbb{F}_2[X]$ ist $(X^2 + X + 1) \cdot (X^2 + X)$ die eindeutige Primfaktorzerlegung von $X^4 + X$.	○ Ja / ○ Nein			
	Das Bild von $Y^2-2Y-15$ unter dem Einsetzungshomomorphismus $\mathbb{Q}[Y] \to \mathbb{Q}, Y \mapsto 2$ ist 0 .	○ Ja / ○ Nein			
	Das Polynom $X^2 - 3 \in \mathbb{Q}[X]$ ist irreduzibel.	○ Ja / ○ Nein			
	Teilt man in $\mathbb{F}_2[X]$ das Polynom $X^4 + X^3 + X + 1$ mit Rest durch $X^2 + X + 1$, so bleibt als Rest 1.	○ Ja / ○ Nein			
	Das Polynom $X^2 + X + 1 \in \mathbb{F}_2[X]$ ist irreduzibel.	○ Ja / ○ Nein			
3	Es sei K ein Körper, $n \in \mathbb{N}$, $n \geq 2$ und $A \in K^{n \times n}$. Sind die folgenden Auss	agen richtig?			
	Die Abbildung det : $GL_n(K) \to K^*$ ist ein injektiver Gruppenhomomorphismus.	○ Ja / ○ Nein			
	Ist A eine invertierbare obere Dreiecksmatrix, dann auch A^{-1} .	○ Ja / ○ Nein			
	Sind zwei Spalten von A linear abhängig, dann ist $det(A) = 0$.	○ Ja / ○ Nein			
	Die Matrix A ist genau dann invertierbar, wenn $A \cdot \tilde{A} \neq 0$ ist (\tilde{A} ist die zu A komplementäre Matrix).	○ Ja / ○ Nein			
	Es sei $K = \mathbb{R}$ und $A = (a_{ij}) \in \mathbb{R}^{n \times n}$. Ist $a_{ij} \notin \mathbb{Q}$ für ein Paar (i, j) , dann ist auch $\det(A) \notin \mathbb{Q}$.	○ Ja / ○ Nein			
4	Es sei $n \in \mathbb{N}$ mit $n \geq 2$. Sind die folgenden Aussagen richtig?				
	Es sei $A=(a_{ij})\in\mathbb{R}^{n\times n}$ invertierbar. Sind alle $a_{ij}\in\mathbb{Z}$, dann gilt: $A^{-1}=$	○ Ja / ○ Nein			
	$\left(\frac{b_{ij}}{c_{ij}}\right)$ mit gewissen $b_{ij}, c_{ij} \in \mathbb{Z}$ und $c_{ij} \mid \det(A)$.				
	$A \in \mathbb{Z}^{n \times n}$ ist genau dann invertierbar in $\mathbb{Z}^{n \times n}$, wenn $\det(A) \in \{1, -1\}$ ist.	○ Ja / ○ Nein			
	Es sei K ein Körper, $A \in K^{n \times n}$ invertierbar und $A^t = A^{-1}$. Dann ist	○ Ja / ○ Nein			
	$\det(A) = 1.$				
	Gilt für $A \in \mathbb{Z}^{n \times n}$, dass in jeder Zeile genau eine 1 und sonst lauter Nullen stehen, dann ist $\det(A) \in \{1, -1\}$.	○ Ja / ○ Nein			
	Gilt für $A \in \mathbb{Z}^{n \times n}$, dass in jeder Zeile und in jeder Spalte genau eine 1 und	○ Ja / ○ Nein			
	sonst lauter Nullen stehen, dann ist $A \in \mathbb{Z}^{n \times n}$ invertierbar.				
Di	Die folgenden Aufgaben sind schriftlich zu bearbeiten.				

- 5 Es sei K ein Körper, $n \in \mathbb{N}$ und $A \in K^{n \times n}$. Zeigen Sie: Es existiert ein Polynom $0 \neq f \in K[X]$ mit $\deg(f) \leq n^2$, für das $f(A) = 0 \in K^{n \times n}$ ist
- 6 Es sei K ein Körper und $\mathcal{P}(K)$ die Menge der Polynomfunktionen, also

$$\mathcal{P}(K) := \left\{ f: K \to K, k \mapsto \sum_{i=0}^n a_i k^i \, \middle| \, \text{für ein } n \in \mathbb{N} \cup \{0\} \text{ und gewisse } a_i \in K, 0 \leq i \leq n \right\}.$$

Zeigen Sie:

- (i) $\mathcal{P}(K)$ mit dem üblichen, punktweisen Produkt $(f \cdot g)(k) = f(k) \cdot g(k)$ für $f, g \in \mathcal{P}(K)$ und $k \in K$ ist eine K-Algebra.
- (ii) Es existiert ein surjektiver K-Algebren-Homomorphismus $\alpha: K[X] \to \mathcal{P}(K)$.
- (iii) Der Homomorphismus α ist genau dann bijektiv, wenn K unendlich viele Elemente enthält.

Abgabe bis spätestens am Freitag, dem 25. Januar 2002, um 12 Uhr im Zettelkasten am Lehrstuhl D für Mathematik.

Übungsblatt Nr. 13, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß

1	Seien K ein Körper und V ein K -Vektorraum, $\varphi \in \operatorname{End} V$ und $1 \leq \dim V = n < \infty$. Sind die folgenden Aussagen wahr?			
	Ist 1 einziger Eigenwert, so ist φ die Identität.	○ Ja / ○ Nein		
	Es gibt ein Element $a \in K$, das nicht Eigenwert eines Endomorphismus von V ist.	○ Ja / ○ Nein		
	Falls $K=\mathbb{R}$ und $n=5$ ist, so hat φ einen Eigenwert.	○ Ja / ○ Nein		
	φ hat höchstens n verschiedene Eigenwerte.	◯ Ja / ◯ Nein		
	Sei $K=\mathbb{C}$. Falls mit jedem Eigenwert a von φ auch $2a$ ein Eigenwert von φ ist, dann ist $\varphi=0$.	○ Ja / ○ Nein		
2	Sei K ein Körper und V ein K -Vektorraum der Dimension $n \geq 1$. Weiter se sein charakteristisches Polynom. Außerdem sei $B \in K^{n \times n}$ und χ_B ihr charak Welche der folgenden Aussagen sind richtig?			
	Wenn φ bijektiv ist, so ist $\chi_{\varphi}(0) \neq 0$.	○ Ja / ○ Nein		
	Jedes normierte Polynom vom Grad n ist charakteristisches Polynom eines Endomorphismus von V .	○ Ja / ○ Nein		
	Falls $K=\mathbb{C}$ ist, so hat die Menge der Nullstellen von χ_B genau n Elemente.	○ Ja / ○ Nein		
	Wenn für eine Matrix $A \in K^{n \times n}$ gilt $\chi_{\varphi} = \chi_A$, so gibt es eine geordnete Basis \mathcal{B} von V mit $M_{\mathcal{B}}^{\mathcal{B}}(\varphi) = A$.	○ Ja / ○ Nein		
	Falls die Summe der Koeffizienten von χ_{φ} gleich Null ist, so gibt es ein $0 \neq v \in V$ mit $\varphi(v) = v$.	○ Ja / ○ Nein		
3	Es sei K ein Körper und $K[X]$ der Polynomring in der Unbestimmten X über den Aussagen über Diagonalisierbarkeit von Matrizen richtig?	er K. Sind die folgen-		
	Eine Matrix $A \in K^{n \times n}$ $(n \ge 2)$ ist genau dann diagonalisierbar, wenn $K^{n \times 1}$ eine Basis aus Eigenvektoren von A hat.	◯ Ja / ◯ Nein		
	Eine Matrix $A \in K^{n \times n}$ ist genau dann diagonalisierbar, wenn eine Diagonalmatrix $D \in K^{n \times n}$ und eine invertierbare Matrix $T \in K^{n \times n}$ existiert mit $TD = TA$.	○ Ja / ○ Nein		
	Jede quadratische Matrix, deren Einträge alle gleich sind, ist diagonalisierbar.	○ Ja / ○ Nein		
	Jede Matrix $A \in K^{n \times n}$, für die $0 \cdot A = A$ gilt, ist diagonalisierbar.	○ Ja / ○ Nein		
	Jede Begleitmatrix eines Polynoms $f \in K[X]$ vom Grad größer als 1 ist diagonalisierbar.	○ Ja / ○ Nein		
4	Es sei K ein Körper, V ein endlich-dimensionaler Vektorraum und $\varphi:V\to$ mus von V . Sind die folgenden Aussagen über Eigenvektoren richtig?	V ein Endomorphis-		
	Jede Linearkombination von zwei Eigenvektoren von φ zum gleichen Eigenwert ist ein Eigenvektor.	○ Ja / ○ Nein		
	Der Nullvektor ist Eigenvektor von φ .	◯ Ja / ◯ Nein		
	Der Endomorphismus φ hat mindestens einen Eigenvektor.	○ Ja / ○ Nein		
	Die Summe zweier Eigenvektoren von φ zu verschiedenen Eigenwerten ist ein Eigenvektor von φ .	○ Ja / ○ Nein		

Wenn die Dimension von V gleich $n \geq 2$ ist und ein linear unabhängiges	○ Ja / ○ Nein
$(n-1)$ -Tupel (v_1,\ldots,v_{n-1}) von Eigenvektoren von φ existiert, dann gibt es	
auch ein linear unabhängiges n -Tupel (v_1,\ldots,v_n) von Eigenvektoren von	
$\varphi.$	

Die folgenden Aufgaben sind schriftlich zu bearbeiten.

5 Gegeben sei die Matrix

$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \end{pmatrix} \in \mathbb{Q}^{4 \times 4}.$$

Bestimmen Sie alle Eigenwerte und alle Eigenräume von A.

6 Sei K ein Körper und seien $A, B \in K^{n \times n}$ Matrizen, so dass A genau n verschiedene Eigenwerte hat und AB = BA gilt. Zeigen Sie, dass es eine invertierbare Matrix $T \in K^{n \times n}$ gibt, so dass $T^{-1}AT$ und $T^{-1}BT$ beide Diagonalgestalt haben.

Abgabe bis spätestens am Freitag, dem 1. Februar 2002, um 12 Uhr im Zettelkasten am Lehrstuhl D für Mathematik.

Übungsblatt Nr. 14, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß

1				
	Polynome über K gemeint. Sind die folgenden Aussagen wahr?			
	Das Minimalpolynom einer Matrix zerfällt in Linearfaktoren.	◯ Ja / ◯ Nein		
	Jedes normierte Polynom vom Grad größer oder gleich 1 ist Minimalpolynom einer Matrix.	○ Ja / ○ Nein		
	Das Minimalpolynom der Einheitsmatrix ist $X-1$.	◯ Ja / ◯ Nein		
	Das Minimalpolynom der Nullmatrix ist das konstante Polynom 1.	◯ Ja / ◯ Nein		
	Ist $X^2 - X$ das Minimalpolynom von A , dann ist A diagonalisierbar.	○ Ja / ○ Nein		
2	Es sei K ein Körper und $A \in K^{n \times n}$ eine Matrix. Mit Polynomen sind in d Polynome über K gemeint. Sind die folgenden Aussagen wahr?	ieser Aufgabe immer		
	Ist $K = \mathbb{C}$ und $A^4 = E_n$, dann ist A diagonalisierbar.	○ Ja / ○ Nein		
	Falls A und A^2 linear abhängig sind, dann ist A diagonalisierbar.	○ Ja / ○ Nein		
	Das charakteristische Polynom von A ist ein Teiler des Minimalpolynoms.	○ Ja / ○ Nein		
	Ist $A^2 = A$, dann ist A diagonalisierbar.	◯ Ja / ◯ Nein		
	Jedes Polynom ist charakteristisches Polynom einer Matrix.	○ Ja / ○ Nein		
3	Beantworten Sie die folgenden Fragen über Bilinearformen.			
	Eine Bilinearform $(\cdot, \cdot): \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ heißt <i>nicht ausgeartet</i> , falls es zu	○ Ja / ○ Nein		
	jedem $0 \neq v \in \mathbb{R}^n$ ein $w \in \mathbb{R}^n$ gibt mit $(v, w) \neq 0$. Gibt es für $n = 2$			
	nicht ausgeartete Bilinearformen, so dass für jedes $v \in \mathbb{R}^2$ die Gleichung $(v,v)=0$ gilt?			
	Bilden die Sesquilinearformen auf \mathbb{C}^n einen \mathbb{C} -Vektoraum der Dimension $2n$?.	○ Ja / ○ Nein		
	Gibt es injektive Bilinearformen?	○ Ja / ○ Nein		
	Ist für $v \in \mathbb{C}^n$ die Abbildung $\mathbb{C}^n \longrightarrow \mathbb{C}$, $w \longmapsto \langle w, v \rangle$ linear?	○ Ja / ○ Nein		
	Besteht das Bild des Standard-Skalarproduktes $\mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ genau aus den nicht-negativen reellen Zahlen?	○ Ja / ○ Nein		
4	Tragen Sie die gefragten Zahlen in die vorgesehenen Felder ein.			
	Wieviele Matrizen $M \in \mathbb{F}_{17}^{4 \times 4}$ haben ein Minimalpolynom vom Grad 1?			
	$\begin{pmatrix} -22 & 6 & 12 & 3 \end{pmatrix}$			
	Sei $M = \begin{pmatrix} -22 & 6 & 12 & 3 \\ -56 & 16 & 28 & 7 \\ -32 & 8 & 18 & 4 \\ 48 & -12 & -24 & -4 \end{pmatrix} \in \mathbb{Q}^{4 \times 4}$. Teilen Sie das charakteri-	·		
	48 - 12 - 24 - 4 / stische Polynom von M durch das Minimalpolynom von M und geben sie			
	eine Nullstelle des Ergebnisses an.			
	/ 1 2 2			
	Sei $M = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \in \mathbb{R}^{3\times 3}$. Wieviele $a \in \mathbb{R}$ gibt es, so dass der Rang			
	von $aE_3 - M$ kleiner als drei ist?			
	Wieviele Matrizen $M \in \mathbb{F}_2^{2 \times 2}$ haben genau zwei Eigenwerte in \mathbb{F}_2 ?			
	-			

		/ 1	2/3	-1		
١			,			
	Sei $M =$	2	-2	1/2	$\in \mathbb{Q}^{3\times 3}$. Setzen Sie $3 \in \mathbb{Q}$ in das charakteri-	
١	~ • • • • • • • • • • • • • • • • • • •	_	_	-/ -		
		1	1	1 /		
		`		,		
	stische Pol	ynon	n von	M ein	und geben Sie das (gekürzte) Ergebnis an.	

Die folgenden Aufgaben sind schriftlich zu bearbeiten.

- 5 Es sei K ein Körper, $n \in \mathbb{N}$ und $A \in K^{n \times n}$ eine Matrix. Mit $\chi_A \in K[X]$ sei das charakteristische Polynom von A bezeichnet. Zeigen Sie:
 - (i) Wenn $a \in K$ ist und die Dimension $\dim_K(V(a,A)) = m$ für ein $m \in \mathbb{N}$ mit $m \ge 1$ ist, dann gilt $(X-a)^m \mid \chi_A$.
 - (ii) Die Matrix A ist genau dann diagonalisierbar, wenn χ_A in Linearfaktoren zerfällt und für alle Nullstellen a von χ_A gilt, dass die Dimension $\dim_K(V(a,A))$ gleich der Vielfachheit von a als Nullstelle von χ_A ist.
- 6 Es sei $K = \mathbb{R}$ oder $K = \mathbb{C}$ und V ein K-Vektorraum. Weiter sei $\beta: V \times V \to K$ ein Skalarprodukt auf V. Zeigen Sie:
 - (i) Es gilt $\beta(v+v',v+v')+\beta(v-v',v-v')=2\cdot(\beta(v,v)+\beta(v',v'))$ für alle $v,v'\in V$.
 - (ii) Ist $K=\mathbb{R}$, so gilt $\beta(v,v')=\frac{1}{2}\left(\beta(v+v',v+v')-\beta(v,v)-\beta(v',v')\right)$ für alle $v,v'\in V$.
 - (iii) Ist $K=\mathbb{C}$, so gilt $\beta(v,v')=\frac{1}{4}\sum_{k=0}^{3}i^{k}\cdot\beta\left(v+i^{k}\cdot v',v+i^{k}\cdot v'\right)$ für alle $v,v'\in V$.
 - (iv) Ist (v_1, \ldots, v_n) eine Basis von V, für die $\beta(v_j, v_k) = \delta_{j,k}$ (Kronecker-Delta) für $1 \le j, k \le n$ gilt, dann gilt:

$$v = \sum_{k=1}^{n} \beta(v, v_k) \cdot v_k$$
 für alle $v \in V$.

Bemerkung: Die Formel in (i) wird **Parallelogrammidentität** und die Formeln in (ii) und (iii) werden **Polarisationsidentität** genannt.

Was hat die Formel in (i) mit Parallelogrammen zu tun?

Abgabe bis spätestens am Freitag, dem 8. Februar 2002, um 12 Uhr im Zettelkasten am Lehrstuhl D für Mathematik.