Vorlesungsmitschrift

Quantencomputer

WS

2002/2003

Prof. Dr. Grädel

Jan Möbius, David Bommes

9. Dezember 2002

Inhaltsverzeichnis

1	Einl	eitung		2
	1.1	Histori	scher Überblick	2
	1.2	Experi	ment	2
		1.2.1	Erklärung	3
		1.2.2	Messung eines Zustandes	3
	1.3	Einige	Grundlagen der QM	4
		1.3.1	Zustände	4
		1.3.2	Hilbertraum	4
		1.3.3	Dirac-Notation	4
		1.3.4	Qubits	4
		1.3.5	n-Qubit System (Quantenregister)	5
		1.3.6	Notation	5
		1.3.7	Messung	6
		1.3.8	Observable	6
		1.3.9	Evolution	6
		1.3.10	No Cloning Theorem	6
	1.4	Quantu	Im Gates und QGA	7
		1.4.1	Definition	7
		1.4.2	Gates auf 2 ¹ dimensionalem Hilbertraum (m=1)	7
		1.4.3	Gates auf 2 ² dimensionalem Hilbertraum (m=2)	8
		1.4.4	Tensorprodukt von Matrizen	1
		1.4.5	Hadamard Transformation revisited	12
		146	Quantum Gate Arrays (QGA)	13

Kapitel 1

Einleitung

1.1 Historischer Überblick

• 1982 Richard Feynman :

Spekulation über die Möglichkeit, Quantencomputer zu realisieren, welche gewisse Aufgaben effizienter lösen können als klassische Computer.

inhärente Parallelität in QM-Prozessen

- 1985-93 Deutsch, Bernstein-Vazirani, Yao :
 - Modelle für Quanten-Computer (QTM,Quantum gate arrays)
 - Quanten-Komplexität
 - einfache Algorithmen
- 1994 Peter Shor : Polynomzeit Algorithmus für QC um natürliche Zahlen zu faktorisieren. Basis : Quanten-Fourier-Transformation
- 1996 Grover : Suchalgorithmus, der eine Nadel in einem Heuhaufen der Größe N in $O(\sqrt{N})$ Schritten findet.
- 2001 : QC mit 7 Qubit, $\rightarrow 15 = 3.5$ (Shor)

Probleme :

- Mehr Algorithmen?
- Welche Probleme kann man mit QC effizient lösen?
- kann man QC vernünftiger Größe bauen?

1.2 Experiment

Polarisierungsfilter: polarisieren Licht horizontal, vertikal, bzw. 45°.

Abbildung 1.1: Experiment

1.2.1 Erklärung

Der Polarisierungszustand eines Photons ist beschrieben durch den Vektor $|\psi\rangle = \alpha |\uparrow\rangle + \beta |\rightarrow\rangle$ in einem zwei dimensionalen Vektorraum mit der Basis $\{|\uparrow\rangle, |\rightarrow\rangle\}$.

Nur die Richtung ist wesentlich \rightarrow Einheitsvektoren $|\alpha|^2 + |\beta|^2 = 1$ Die Basiswahl ist beliebig. Statt $\{|\uparrow\rangle, |\rightarrow\rangle\}$ geht auch $\{|\nearrow\rangle, |\searrow\rangle\}$. (jedes Paar von orthogonalen Einheitsvektoren ist zulässig).

1.2.2 Messung eines Zustandes

Messung : Projektion bezüglich Orthonormalbasis.

Zu einer Messapparatur gehört eine Basis, wie zum Beispiel $\{|\uparrow\rangle, |\rightarrow\rangle\}$.

Die Messung von $|\psi\rangle = \alpha |\uparrow\rangle + \beta |\rightarrow\rangle$ projiziert $|\psi\rangle$ entweder auf $|\uparrow\rangle$ (mit Wahrscheinlichkeit $|\alpha|^2$) oder auf $|\rightarrow\rangle$ (mit Wahrscheinlichkeit $|\beta|^2$). Nach der Messung ist $|\psi\rangle$ zerstört, transformiert in einen Basiszustand. Jede weitere Messung würde das selbe Resultat ergeben.

Zu verschiedenen Messapparaturen gehören verschiedene ON-Basen.

Polarisierungsfilter bezüglich Polarisierung ζ :

 $Messung \ des \ polarisations \ Zustands \ |\psi\rangle \ bezüglich \ der \ Basis \ \{\sin\zeta|\uparrow\rangle + \cos\zeta|\rightarrow\rangle, \\ \cos\zeta|\uparrow\rangle - \sin\zeta|\rightarrow\rangle\}$

Abbildung 1.2: Messung des Pol. Zustands

Die Photonen, die nach der Messung der Polarisation entsprechen werden durchgelassen, die anderen reflektiert.

• Filter A :

 $\begin{array}{l} \mbox{Polarisierung}: | \rightarrow \rangle \\ \mbox{Basis}: \{ | \uparrow \rangle, | \rightarrow \rangle \} \\ \mbox{50\% der Photonen werden auf } | \rightarrow \rangle \mbox{ projeziert und durchgelassen.} \end{array}$

- Filter B : Polarisierung : $|\uparrow\rangle$ Basis : $\{|\uparrow\rangle, |\rightarrow\rangle\}$
- Filter C : Polarisierung : $| \nearrow \rangle$ Basis : $\{\frac{1}{\sqrt{2}}(| \uparrow \rangle + | \rightarrow \rangle), \{\frac{1}{\sqrt{2}}(| \uparrow \rangle - | \rightarrow \rangle)\}$

Beachte :

• $| \rightarrow \rangle = \frac{1}{\sqrt{2}} (| \nearrow \rangle - | \swarrow \rangle)$ • $| \uparrow \rangle = \frac{1}{\sqrt{2}} (| \nearrow \rangle + | \searrow \rangle)$

Filter B reflektiert alle auf $| \rightarrow \rangle$ polarisierten Photonen. Nun setzt man den Filter C zwischen die Filter A und B. C projeziert die Photonen mit dem Zustand $| \rightarrow \rangle = \frac{1}{\sqrt{2}} | \nearrow \rangle - \frac{1}{\sqrt{2}} | \searrow \rangle$ mit der Wahrscheinlichkeit $\frac{1}{2}$ auf $| \nearrow \rangle$. Die durchgelassenen Photonen mit der Polarisierung $| \nearrow \rangle = \frac{1}{\sqrt{2}} | \uparrow \rangle + \frac{1}{\sqrt{2}} | \rightarrow \rangle$ wieder mit Wahrscheinlichkeit $\frac{1}{2}$ auf $| \uparrow \rangle$ projeziert und durchgelassen.

1.3 Einige Grundlagen der QM

1.3.1 Zustände

Zustand : vollständige Beschreibung eines physikalischen Systems. In QM sind die Zustände Einheitsvektoren in einem Hilbertraum.

1.3.2 Hilbertraum

Hilbert Vektorraum über \mathbb{C} , mit einem inneren Produkt $\langle \cdot | \cdot \rangle : H \times H \to \mathbb{C}$ mit

- $\langle \psi | \phi \rangle = \langle \psi | \phi \rangle^*$
- $\langle \psi | \psi \rangle \ge 0$ und $\langle \psi | \psi \rangle = 0$ gdw. $\psi = 0$
- $\langle \psi | \alpha \phi_1 + \beta \phi_2 \rangle = \alpha \langle \psi | \phi_1 \rangle + \beta \langle \psi | \phi_2 \rangle$

induzierte Norm : $||\psi|| = \sqrt{\langle \psi | \psi \rangle}$

(Für unendlich-dimensionale Hilberträume ist zusätzlich zu fordern, dass H vollständig ist bezüglich || ||. Jede Cauchy Folge hat einen Grenzwert in H). **Hier :** (fast) ausschließlich endl.-dimensionale Räume.

1.3.3 Dirac-Notation

 $\begin{array}{l} |\psi\rangle \ (\text{ket}) \ (\text{Ausnahme Nullvektor 0 (nicht } |0\rangle)) \\ \langle \phi| \ \text{ist der duale Vektor zu } |\phi\rangle \ (\text{Ira}) \\ \langle \phi| : H \rightarrow \mathbb{C} \ ; \ |\psi\rangle \mapsto \langle \phi|\psi\rangle \end{array}$

1.3.4 Qubits

• Bit :

elementarer Baustein eines klassischen Rechners mit zwei Zuständen (01)

• Qubit :

Superpositionen der beiden Basiszustände $|0\rangle$ und $|1\rangle$ bilden Orthonormalbasis eines Hilbertraums H_2 . Ein Qubit ist ein Vektor $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ mit $|\alpha|^2 + |\beta|^2 = 1$.

Die Messung des Qubits ψ führt mit Wahrscheinlichkeit $|\alpha|^2$ zum Zustand $|0\rangle$ und mit Wahrscheinlichkeit $|\beta|^2$ zum Zustand $|1\rangle$. Jede wiederholte Messung führt zum selben Resultat. Obwohl ein Qubit unendlich viele Zustände haben kann, kann man nur ein Bit Information extrahieren. Dieser Extraktionsprozess (Messung) ist probabilistisch.

1.3.5 n-Qubit System (Quantenregister)

Klassisches System mit n Bits hat 2^n Zustände $0 \rightarrow 0, 0 \rightarrow 1, ..., 1 \rightarrow 1$

n-Qubit System hat Basiszustände $|0-0\rangle, |0-0\rangle, \dots, |1-1\rangle$ und kann sich in jeder Subposition $\alpha_0|0-0\rangle + \alpha_1|0-0\rangle + \dots + \alpha_{2^n-1}|1-1\rangle$ befinden, mit $\sum_{n=0}^{2^n-1} |\alpha_n|^2 = 1$

$$H_{2^n} = \underbrace{H_2 \otimes \ldots \otimes H_2}_{n \text{ mal}}$$

klassisch: Kolineare Systeme mit Zustandsräumen V mit Basis v_1, \ldots, v_m $V \cap W = 0$ W mit Basis w_1, \ldots, w_n \sim Produktraum $V \times W$ mit Basis $v_1, \ldots, v_m, w_1, \ldots, w_n$ $dim(V \times W) = dim(V) + dim(W)$

hier: Zustandsraum $V \otimes W$ mit Basis $\{v_i \otimes w_j : i = 1, ..., m, j = 1, ..., n\}$ $dim(V \otimes W) = dim(V) \cdot dim(W)$ (exp. Wachstum der Dimension in der Anzahl der Komponenten)

1.3.6 Notation

- für $|0\rangle \otimes |0\rangle$ auch $|0\rangle |0\rangle$ oder $|00\rangle$
- $|0-0\rangle$ für $|0\rangle \otimes |0\rangle \otimes \ldots \otimes |0\rangle$
- Für jedes Paar: |ψ⟩ = ∑_i a_i |v_i⟩ in V und |ψ⟩ = ∑_j b_j |w_j⟩ in W haben wir in V ⊗ W den Vektor |ψ⟩ ⊗ |φ⟩ = ∑_{i,j} a_ib_j(|v_i⟩ ⊗ |w_i⟩)
 Aber: nicht jeder Vektor |v⟩ ∈ V ⊗ W kann als Produkt |v⟩ = |ψ⟩ ⊗ |φ⟩ mit |ψ⟩ ∈ V, |φ⟩ ∈ W geschrieben werden!

Beispiel:

 $|\nu\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \in H_2 \otimes H_2$ $\text{es gibt keine } |\phi_1\rangle, |\phi_2\rangle \in H_2 \text{ mit } |\nu\rangle = |\phi_1\rangle \otimes |\phi_2\rangle$

Beweis :

sonst existieren
$$\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{C}$$
 mit
 $|\nu\rangle = (\alpha_1|0\rangle + \beta_1|1\rangle) \otimes (\alpha_2|0\rangle + \beta_2|1\rangle) = \alpha_1\alpha_2|00\rangle + \underbrace{\alpha_1\beta_2}_{=0}|01\rangle + \underbrace{\alpha_2\beta_1}_{=0}|10\rangle + \beta_1\beta_2|11\rangle$
 $\Rightarrow \alpha_1\alpha_2 = 0 \text{ oder } \beta_1\beta_2 = 0 \quad \neq$

Solche nicht-zerlegbaren Zustände heissen entangled (verschränkt)

1.3.7 Messung

Messung des ersten Qubits eines n-Bit-Zustands $|\psi\rangle = \sum_{\nu \in \{0,1\}^n} \alpha_\nu |\nu\rangle$ ergibt:

- $|0\rangle$ mit Wahrscheinlichkeit $p = \sum_{w \in \{0,1\}^{n-1}} |\alpha_{0w}|^2$ und projiziert $|\psi\rangle$ auf den Zustand $|0\rangle \otimes \frac{1}{\sqrt{p}} \sum_{w \in \{0,1\}^{n-1}} \alpha_{0w} |w\rangle$
- $|1\rangle$ mit Wahrscheinlichkeit $q = \sum_{w \in \{0,1\}^{n-1}} |\alpha_{1w}|^2$ und projiziert $|\Psi\rangle$ auf den Zustand $|1\rangle \otimes \frac{1}{\sqrt{q}} \sum_{w \in \{0,1\}^{n-1}} \alpha_{1w} |w\rangle$ (q = 1 - p)

1.3.8 Observable

Eigenschaft eines physikalischen Systems, welche prinzipiell messbar ist.

- Zerlegung des Zustandsraums in orthogonale Teilräume: $H = E_1 \oplus E_2 \oplus \ldots \oplus E_n \text{ mit } E_i \perp E_j \ (i \neq j)$ $|\Psi\rangle = |\varphi_1\rangle + |\varphi_2\rangle + \ldots + |\varphi_n\rangle \text{ mit } |\varphi_i \in E_i\rangle$
- Messung bzgl. $\{E_1, \ldots, E_n\}$: Projektion von $|\psi\rangle$ auf ein $|\phi_i\rangle$
- Resultat: $|\phi_i\rangle$ mit Wahrscheinlichkeit $\|\phi_i\|^2$

1.3.9 Evolution

Evolution eines qm-Systems via unitärer Transformationen $|\psi\rangle \mapsto U|\psi\rangle$

- U lineare Abbildung von H nach H
- U unitär: $\langle U_{\varphi}|U_{\psi}\rangle = \langle \varphi|\psi\rangle$
- Für die Beschreibung der Transformation durch eine Matrix U bedeutet dies, dass $U^* = U^{-1} (U^* \text{ konjugiert transponierte Matrix zu U})$
- Insbesondere sind unitäre Transformationen invertierbar d.h. reversibel
 → Berechnungen von QL sind aus reversiblen Basisschritten zusammengesetzt.
 (Ausnahme: Messung !)

1.3.10 No Cloning Theorem

Es gibt für n > 1, keine <u>unitäre Transformation</u> Copy : $H_n \otimes H_n \to H_n \otimes H_n$ so dass für ein $|a\rangle \in H_n$ und alle $|\Psi\rangle \in H_n$

$$Copy(|\psi\rangle \otimes |a\rangle) = (|\psi\rangle \otimes |\psi\rangle)$$
 (Notation: $|\psi, \varphi\rangle = |\psi\rangle |\varphi\rangle = |\psi\rangle \otimes |\varphi\rangle$)

Beweis :

Annahme : Copy existiert. Für n > 1 existiert ein zu $|a\rangle$ orthogonaler Zustand $|\phi\rangle$ Setze $|\psi\rangle = \frac{1}{\sqrt{2}}(|a\rangle + |\phi\rangle)$

$$\begin{split} Copy(|\Phi\rangle|a\rangle) &= \frac{1}{\sqrt{2}} \left[Copy(|a\rangle|a\rangle) + Copy(|\phi\rangle|a\rangle) \right] \\ &= \frac{1}{\sqrt{2}} (|a\rangle|a\rangle + |\phi\rangle|\phi\rangle) \\ &\neq |\psi\rangle|\psi\rangle \\ &|\psi\rangle|\psi\rangle &= \frac{1}{\sqrt{2}} (|aa\rangle + |a\phi\rangle + |\phia\rangle + |\phi\phi\rangle) \end{split}$$

1.4 Quantum Gates und QGA

1.4.1 Definition

Ein Quantum Gate auf m Qubits ist eine unitäre Transformation $U: H_{2^m} \rightarrow H_{2^m}$ auf dem $2^m - dim$ Hilbertraum.

1.4.2 Gates auf 2¹ dimensionalem Hilbertraum (m=1)

Gates auf einem Qubit $U: H_2 \rightarrow H_2$ Betrachte Standardbasis $|0\rangle, |1\rangle$ von H_2

$$U: \quad |0\rangle \mapsto a|0\rangle + b|1\rangle \quad \rightsquigarrow \begin{pmatrix} a \\ b \end{pmatrix}$$
$$|1\rangle \mapsto c|0\rangle + d|1\rangle \quad \rightsquigarrow \begin{pmatrix} c \\ d \end{pmatrix}$$
$$\sim Matrix \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

U unitär: $\begin{pmatrix} a^* & b^* \\ c^* & d^* \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Koordinatendarstellung : $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Beispiel :

•
$$M_{\neg} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 ("not" Gate)
 $M_{\neg} |0\rangle = |1\rangle, M_{\neg} |1\rangle = |0\rangle$

• Sei
$$M = \frac{1}{2} \begin{pmatrix} i+1 & 1-i \\ 1-i & 1+i \end{pmatrix}$$
 unitär, da
 $M^*M = \frac{1}{4} \begin{pmatrix} 1-i & 1+i \\ 1+i & 1-i \end{pmatrix} \begin{pmatrix} 1+i & 1-i \\ 1-i & 1+i \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 2 \cdot (1-i^2) & (1-i)^2 + (1+i)^2 \\ (1-i)^2 + (1+i)^2 & 2 \cdot (1-i^2) \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$
 $MM = \frac{1}{4} \begin{pmatrix} 1+i & 1-i \\ 1-i & 1+i \end{pmatrix}^2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = M_{\neg}$
also $M = \sqrt{M_{\neg}}$

• Hadamard (Hadamard-Walsh) $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ transformiert Standardbasis $|0\rangle$, $|1\rangle$ in Hadamard-Basis (Fourier - Basis)

$$|0'\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \qquad |1'\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

und zurück,

$$H|0'\rangle = H\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |0\rangle$$
$$H|1'\rangle = H\begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle$$
$$S(Phase) = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$
$$T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{\varphi}} \end{pmatrix}$$

Abbildung 1.3: Quantum Gate (m=1)

1.4.3 Gates auf 2² dimensionalem Hilbertraum (m=2)

2-Qubit Gates $U: H_4 \rightarrow H_4$ Standard Basis $\underbrace{|00\rangle}_{\begin{pmatrix}1\\0\\0\\0\end{pmatrix}} \underbrace{|01\rangle}_{\begin{pmatrix}1\\0\\0\\0\end{pmatrix}} \underbrace{|10\rangle}_{\begin{pmatrix}0\\1\\0\\0\\1\\0\end{pmatrix}} \underbrace{|11\rangle}_{\begin{pmatrix}0\\0\\1\\0\end{pmatrix}} \underbrace{|01\rangle}_{\begin{pmatrix}0\\0\\1\\0\end{pmatrix}} \underbrace{|11\rangle}_{\begin{pmatrix}0\\0\\1\\0\end{pmatrix}}$

Beispiel : CNOT (controlled-NOT)

Abbildung 1.4: Notation M_{CNOT}

$$M_{CNOT} = \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right)$$

 $\begin{array}{l} M_{CNOT} \left| 00 \right\rangle = \left| 00 \right\rangle \\ M_{CNOT} \left| 01 \right\rangle = \left| 01 \right\rangle \\ M_{CNOT} \left| 10 \right\rangle = \left| 11 \right\rangle \\ M_{CNOT} \left| 11 \right\rangle = \left| 10 \right\rangle \end{array}$

 $M_{CNOT} = |ij\rangle = |i\ i\otimes j\rangle$

Allgemein :

Sei U eine unitäre Transformation auf einem Qubit.

Controlled-U (C-U) Transformation auf zwei Qubits: C-U $|ij\rangle = |i\rangle \otimes$ if *i* then $U|j\rangle$ else $|j\rangle$

Abbildung 1.5: allgemeine Notation

Interessantes Gate : C-C-NOT = Toffoli-Gate (Tf)

 $\mathrm{Tf}|ijk\rangle = |ij \ ij \otimes k\rangle$

Abbildung 1.6: Notation C-C-NOT

Tf als klassisches Gate :

$$\begin{array}{rcl} \mathrm{Tf} \colon \{0,1\}^3 & \to & \{0,1\}^3 \\ (i,j,k) & \mapsto & (i,j,ij \oplus k) \end{array}$$

Jeder klassische Schaltkreis kann durch einen Schaltkreis aus Tf-Gates simuliert werden. Zu $f : \{0,1\}^n \to \{0,1\}^m$ betrachten wir die reversible Funkition

$$\begin{array}{rcl} f': \{0,1\}^n \times \{0,1\}^m & \to & \{0,1\}^n \times \{0,1\}^m \\ (x,y) & \mapsto & (x,f(x) \oplus y) \end{array}$$

Die Menge Ω von reversiblen Gates ist vollständig (für klassische reversible Berechnungen) wenn zu jeder reversiblen Funktion

 $g: \{0,1\}^n \to \{0,1\}^n$ ein reversibler Schaltkreis aus Ω -Gates gebaut werden kann, welcher eine Funktion $h: \{0,1\}^n \times \{0,1\}^k \to \{0,1\}^n \times \{0,1\}^k$ realisiert, so dass für ein festes $u \in \{0,1\}^k$ h(x,u) = (g(x),v)

Satz :

{Tf} ist vollständig (für klassische reversible Berechnungen)

Beweis: Jede Funktion kann durch einen klassischen Schaltkreis über { NAND} berechnet werden

Abbildung 1.7: NAND

 $|ij\rangle \mapsto |i\rangle \otimes \text{ if } i = 0 \text{ then } U|j\rangle \text{ else } |j\rangle$

Abbildung 1.8: Kontrolle durch 0 statt 1

1.4.4 Tensorprodukt von Matrizen

Definition :

Sei
$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$
 (mxn)-Matrix
 $B = \begin{pmatrix} b_{11} & \cdots & b_{1s} \\ \vdots & \ddots & \vdots \\ b_{r1} & \cdots & b_{rs} \end{pmatrix}$ (rxs)-Matrix
Dann ist die (mr × ns)-Matrix $A \otimes B := \begin{pmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{pmatrix}$

Seien *A*, *B* (2 × 2)-Matrizen, welche Quanten-Gates auf einem Qubit beschreiben, dann wird die simultane Aktion von *A* auf dem ersten und *B* auf dem zweiten Qubit durch die Matrix $A \otimes B$ beschrieben :

Abbildung 1.9: simultane Aktion

Begründung:

ausrechen

In den Spalten der Matrix stehen, in Koordinatenschreibweise, die Bilder der Basisvektoren Operation : $\underbrace{|i\rangle \otimes |j\rangle}_{i \to i} \mapsto A|i\rangle \otimes B|j\rangle$

$$A = \begin{pmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{pmatrix} B = \begin{pmatrix} b_{00} & b_{01} \\ b_{10} & b_{11} \end{pmatrix}$$

$$\begin{aligned} A|i\rangle \otimes B|j\rangle &= (a_{0i}|0\rangle + a_{1i}|1\rangle) \otimes (b_{0j}|0\rangle + b_{1j}|1\rangle) \\ &= a_{0i}b_{0j}|00\rangle + a_{0i}b_{1j}|01\rangle + a_{1i}(b_{0j}|10\rangle + a_{1i}b_{1j}|11\rangle \end{aligned}$$

In der zu $|ij\rangle$ gehörenden Spalte der Produktmatrix steht also : $\begin{pmatrix} a_{0i} \cdot b_{0j} \\ a_{0i} \cdot b_{1j} \\ a_{1i} \cdot b_{0j} \\ a_{1i} \cdot b_{1j} \end{pmatrix}$

Dies ist genau die entsprechende Spalte von $A \otimes B$. Dies gilt für Räume beliebiger Dimensionen. Wenn A und B (unitäre) Transformationen auf H_n bzw. H_m beschreiben, dann beschreibt $A \otimes B$ die Operation auf $H_n \otimes H_m$ die der simultanen Kombination der beiden Operationen entspricht(Reihenfolge egal). $A \otimes B$ führt kein Entanglement ein.

Beispiel:

Sei A = B = H (Hadamard)

$$(H \otimes H)|ij\rangle = \frac{1}{2}(|0\rangle + (-1)^{i}|1\rangle) \otimes (|0\rangle + (-1)^{j}|1\rangle)$$

= $\frac{1}{2}(|00\rangle + (-1)^{j}|01\rangle + (-1)^{i}|10\rangle + (-1)^{i+j}|11\rangle)$

zerlegbar ($|ij\rangle$ zerlegbar, $H \otimes H$ führt kein Entanglement ein)

Hingegen ist M_{CNOT} kein Tensorprodukt von (2×2) Matrizen.

$$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right)$$

Betrachte Operation von M_{CNOT} auf zerlegbarem Zustand :

$$\begin{aligned} |\Psi\rangle &= \frac{1}{\sqrt{2}}((|0\rangle + |1\rangle) \otimes |0\rangle) \\ &= \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle) \\ M_{CNOT}|\Psi\rangle &= \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \quad \text{EPR}-\text{Paar(entangled)} \end{aligned}$$

führt also ein Entanglement ein.

1.4.5 Hadamard Transformation revisited

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$
$$H|0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$
$$H|1\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$

Sei $H^{\otimes n} = \underbrace{H \otimes H \otimes \ldots \otimes H}_{m-Mal} : H_{2^n} \to H_{2^n}$

Abbildung 1.10: Hadamard auf mehreren Qubits

Mit linearem Aufwand (n Q-Gates) wird $|0-0\rangle$ in gleichmäßige Überlagerung aller 2^n Basisvektoren transformiert!

1.4.6 Quantum Gate Arrays (QGA)

Sei Ω eine Menge von Quanten-Gates. Ein Quanten Schaltkreis oder Quanten Gate Array(QGA) auf n Qubits ist eine unitäre Transformation $U: H_{2^n} \to H_{2^n}$, welche aus Q-Gates aus Ω zusammengesetzt ist.

Basisoperation :

Wende Gate G auf Qubits i_1, \ldots, i_m an.

Abbildung 1.11: Basisoperation

 $P_{i_1i_2}^{-1}(G \otimes I_{2^{n-2}})P_{i_1i_2}$

 $P_{i_1i_2}$: Permutation, welche Qubits i_1, i_2 auf Qubits 1,2 vertauscht.

Abbildung 1.12: Basisoperation mit Permutation

Index

Basisoperation, 13

C-C-NOT, 9 C-U, 9 CNOT, 8 controlled U, 9 controlled-NOT, 8

Dirac-Notation, 4

entangled, 5 Entanglement, 5 Evolution, 6

Hadamard, 7, 12 Hilbertraum, 4

induzierte Norm, 4

Koordinatendarstellung, 7

Messung, 3, 6

n-Qubit System, 5 No Cloning Theorem, 6 Notation, 5

Observable, 6

Polarisierungsfilter, 2

QGA, 13 Quantum Gate, 7 Quantum Gate Array, 13 Qubit, 4

Tensorprodukt von Matrizen, 11 Tf-Gate, 9 Toffoli-Gate(Tf), 9

unitär, 7

Zustand, 4

Abbildungsverzeichnis

1.1	Experiment	3
1.2	Messung des Pol. Zustands	3
1.3	Quantum Gate (m=1)	8
1.4	Notation <i>M</i> _{CNOT}	8
1.5	allgemeine Notation	9
1.6	Notation C-C-NOT	9
1.7	NAND	0
1.8	Kontrolle durch 0 statt 1	1
1.9	simultane Aktion	1
1.10	Hadamard auf mehreren Qubits	3
1.11	Basisoperation	3
1.12	Basisoperation mit Permutation	4