

LEHRSTUHL FÜR INFORMATIK 2 👩

RWTH Aachen · D-52056 Aachen · GERMANY

Winter term 2008/09

Prof. Dr. Ir. J.-P. Katoen

Exam in Model Checking February 27, 2009

Solution

(10 points)

Let P and P' be safety properties. Prove that $BadPref(P) \cap BadPref(P') = BadPref(P \cup P')$. Solution:

$$\begin{aligned} \hat{\sigma} \in BadPref(P) \cap BadPref(P') \iff P \cap \left\{ \sigma' \in \left(2^{AP}\right)^{\omega} \mid \hat{\sigma} \in pref(\sigma') \right\} &= \emptyset \\ & \wedge P' \cap \left\{ \sigma' \in \left(2^{AP}\right)^{\omega} \mid \hat{\sigma} \in pref(\sigma') \right\} &= \emptyset \\ \iff \left(P \cup P' \right) \cap \left\{ \sigma' \in \left(2^{AP}\right)^{\omega} \mid \hat{\sigma} \in pref(\sigma') \right\} &= \emptyset \\ \iff \hat{\sigma} \in BadPref(P \cup P'). \end{aligned}$$

Consider the linear-time property P over $AP = \{a, b\}$:

" $(\neg a \land \neg b)$ holds infinitely often and $(a \land b)$ never holds and between any two occurrences of $(\neg a \land \neg b)$, the number of states where b holds is even."

- 1. Provide an NBA \mathcal{A} over 2^{AP} such that $\mathcal{L}_{\omega}(\mathcal{A}) = P$. Hint: Parts (b) and (c) can be solved without a solution for part (a).
- 2. Formally prove or disprove the following statements:
 - *P* is a safety property.
 - *P* is a liveness property.
- 3. Let \mathcal{A}' be an NBA over 2^{AP} . Then $P' = \mathcal{L}_{\omega}(\mathcal{A}')$ is the linear-time property defined by \mathcal{A}' . Is it always the case that there exists an LTL-formula φ such that $P' = Words(\varphi)$? Justify your answer!

Solution:

1. An NBA \mathcal{A} over 2^{AP} with $\mathcal{L}_{\omega}(\mathcal{A}) = P$ is depicted below:

2. P can be characterized by the ω -regular expression E derived as follows:

$$L_{q_0,q_2} = (\{a\} + \{b\})^* . \emptyset$$

$$L_{q_2,q_2} = (\{b\}.\{a\}^* . \{b\}.\{a\}^*)^* . \emptyset$$

$$E = L_{q_0,q_2}.L_{q_2,q_2}^{\omega} = (\{a\} + \{b\})^* . (\emptyset.(\{b\}.\{a\}^* . \{b\}.\{a\}^*)^*)^{\omega}.$$

We disprove that P is

- a safety property: $\sigma = \emptyset\{a\}^{\omega} \in (2^{AP})^{\omega} \setminus P$. Note that for all $\hat{\sigma} \in pref(\emptyset\{a\}^{\omega})$ it holds that $\hat{\sigma}.\emptyset^{\omega} \in P$. Thus no bad prefix exists for σ and P is not a safety property.
- a liveness property: $\{a, b\} \notin pref(P)$. Hence $pref(P) \neq (2^{AP})^*$.

3. No. LTL is strictly less expressive than the class of ω -regular languages. See Remark 5.43.

(4 + 4 + 2 points)

Let $\varphi = (a \land \bigcirc a) \mathsf{U}(a \land \neg \bigcirc a)$ be an LTL-formula over $AP = \{a\}$.

- 1. Compute all elementary sets with respect to φ .
- 2. Construct the GNBA \mathcal{G}_{φ} according to the algorithm from the lecture such that $\mathcal{L}_{\omega}(\mathcal{G}_{\varphi}) = Words(\varphi)$.
- 3. Give an ω -regular expression E such that $\mathcal{L}_{\omega}(\mathcal{G}_{\varphi}) = \mathcal{L}_{\omega}(E)$.

Solution:

1. The elementary sets are:

	a	$\bigcirc a$	$a \wedge \bigcirc a$	$a \wedge \neg \bigcirc a$	φ
B_1	0	0	0	0	0
B_2	0	1	0	0	0
B_3	1	0	0	1	1
B_4	1	1	1	0	0
B_5	1	1	1	0	1

2. The GNBA $\mathcal{G}_{\varphi} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$ is defined by:

$$Q = \{B_1, B_2, B_3, B_4, B_5\}$$
$$Q_0 = \{B_3, B_5\}$$
$$\mathcal{F} = \{F_{\varphi}\}$$
$$F_{\varphi} = \{B_1, B_2, B_3, B_4\}$$

The transition relation δ is given by the following graph:

3. We derive $\mathcal{L}_{\omega}(\mathcal{G}_{\varphi}) = Words(\varphi) = \{a\}^{+} \emptyset \left(2^{AP}\right)^{\omega}$.

(3 + 4 + 3 points)

Compute $Sat_{sfair}(\Phi)$ for the CTL-formula Φ and the strong fairness assumption sfair:

$$\Phi = \exists \Box a$$

sfair = $\Box \diamond a \to \Box \diamond \exists (\neg a) \mathsf{U} (\forall \bigcirc b)$

where TS over $AP = \{a, b\}$ is given by:

Proceed in the following steps:

- 1. Determine $Sat (\exists (\neg a) \cup (\forall \bigcirc b))$ (without fairness).
- 2. Determine $Sat_{sfair}(\exists \Box true)$.
- 3. Determine $Sat_{sfair}(\Phi)$.

Solution:

1. $Sat(\exists (\neg a) \mathsf{U}(\forall \bigcirc b))$: Consider the state subformula $\forall \bigcirc b$. Then $Sat(\forall \bigcirc b) = \{s_5\}$. Further, $Sat(\neg a) = \{s_0, s_1, s_2, s_5\}$. Using the backward search starting in s_5 we derive $Sat(\exists (\neg a) \mathsf{U}(\forall \bigcirc b)) = \{s_0, s_1, s_2, s_5\}$.

Now we relabel states in Sat(a) with a_1 and those in $Sat(\exists (\neg a) U(\forall \bigcirc b))$ with b_1 to encode the strong fairness constraint in the transition system:

- 2. Compute $Sat_{sfair}(\exists \Box true)$:
 - The SCCs of G[true] of TS[true] are:

$$\begin{array}{ll} C_1 = \{s_0, s_3\} & C_2 = \{s_0, s_1\} \\ C_3 = \{s_3, s_4\} & C_4 = \{s_2, s_5\} \\ C_{1,2} = \{s_0, s_1, s_3\} & C_{1,3} = \{s_0, s_3, s_4\} \\ \end{array}$$

Then $T = \{C_1, C_2, C_{1,2}, C_{1,2,3}, C_4\}$. Some examples for this: - $C_3 \notin T$ because $C_3 \cap Sat(a) = \{s_3\}$ but $C_3 \cap Sat(\exists (\neg a) \mathsf{U}(\forall \bigcirc b)) = \emptyset$. - $C_1 \in T$ because $C_1 \cap Sat(a) = \{s_3\}$ and also $C_1 \cap Sat(\exists (\neg a) \mathsf{U}(\forall \bigcirc b)) = \{s_0\}$. Then $Sat_{sfair}(\exists \Box \mathsf{true}) = \{s \in S \mid Reach_{TS}(s) \cap \bigcup T \neq \emptyset\} = S$. Extend the labeling accordingly by a fresh atomic proposition a_{fair} (omitted here).

- 3. Compute $Sat_{fair}(\exists \Box a)$:
 - Then G[a] of TS[a] is the graph

Further, there is only one SCC in G[a]: $C_3 = \{s_3, s_4\}$. But as $C_3 \notin T - C_3$ satisfies a_1 infinitely often, but never b_1 — it is not fair. Hence $Sat_{sfair}(\exists \Box a) = \emptyset$.

Solution 5a

Consider the two transition systems TS_1 and TS_2 :

- 1. Prove or disprove $TS_1 \sim TS_2$.
- 2. Prove or disprove $TS_1 \simeq TS_2$.

Solution:

- 1. $TS_1 \not\sim TS_2$: A distinguishing CTL-formula is $\forall \Box (a \rightarrow \exists \bigcirc (a \land b))$. Then $TS_1 \models \Phi$ and $TS_2 \not\models \Phi$ (because of t_1).
- 2. $TS_1 \simeq TS_2$:
 - $TS_1 \leq TS_2$ with simulation relation $\mathcal{R} = \{(s_0, t_0), (s_1, t_4), (s_2, t_3), (s_3, t_5)\}$:

• $TS_2 \leq TS_1$ with simulation relation $\mathcal{R} = \{(t_0, s_0), (t_1, s_1), (t_2, s_1), (t_4, s_1), (t_3, s_2), (t_5, s_3)\}$:

Hence, $TS_1 \preceq TS_2$ and $TS_2 \preceq TS_1$. Therefore $TS_1 \simeq TS_2$.

((2+1) + (3+3+1) points)

Solution 5b

(10 points)

Let $\Phi = \forall a \mathsf{U} (\neg \exists \Box b)$. Prove or disprove the following statement:

There exists an LTL-formula φ that is equivalent to $\Phi.$

Solution:

Let $\Phi = \forall a \mathsf{U} (\neg \exists \Box b)$. Then $\varphi = a \mathsf{U} \neg \Box b$ (by Thm. 6.18). We prove that $\Phi \equiv \varphi$:

$$s \models \Phi \iff \forall \pi \in Paths(s). \exists k \ge 0. \ (\pi[k] \models \neg \exists \Box b \land \forall j < k. \ \pi[j] \models a)$$

$$\iff \forall \pi \in Paths(s). \exists k \ge 0. \ (\pi[k] \models \forall \Diamond \neg b \land \forall j < k. \ \pi[j] \models a)$$

$$\iff \forall \pi \in Paths(s). \exists k \ge 0. \ (\forall \pi' \in Paths(\pi[k]). \exists i \ge 0. \ \pi'[i] \models \neg b \land \forall j < k. \ \pi[j] \models a)$$

$$\iff \forall \pi \in Paths(s). \exists k \ge 0. \ (\pi[k] \models \Diamond \neg b \land \forall j < k. \ \pi[j] \models a)$$

$$\iff s \models a \cup \Diamond \neg b$$

$$\iff s \models a \cup \neg \Box b.$$