Exam in Model Checking

February 27, 2009

Solution

Solution 1

Let P and P^{\prime} be safety properties. Prove that $\operatorname{BadPref}(P) \cap \operatorname{BadPref}\left(P^{\prime}\right)=\operatorname{BadPref}\left(P \cup P^{\prime}\right)$.
Solution:

$$
\begin{aligned}
\hat{\sigma} \in \operatorname{BadPref}(P) \cap \operatorname{BadPref}\left(P^{\prime}\right) & \Longleftrightarrow P \cap\left\{\sigma^{\prime} \in\left(2^{A P}\right)^{\omega} \mid \hat{\sigma} \in \operatorname{pref}\left(\sigma^{\prime}\right)\right\}=\emptyset \\
& \wedge P^{\prime} \cap\left\{\sigma^{\prime} \in\left(2^{A P}\right)^{\omega} \mid \hat{\sigma} \in \operatorname{pref}\left(\sigma^{\prime}\right)\right\}=\emptyset \\
& \Longleftrightarrow\left(P \cup P^{\prime}\right) \cap\left\{\sigma^{\prime} \in\left(2^{A P}\right)^{\omega} \mid \hat{\sigma} \in \operatorname{pref}\left(\sigma^{\prime}\right)\right\}=\emptyset \\
& \Longleftrightarrow \hat{\sigma} \in \text { BadPref }\left(P \cup P^{\prime}\right)
\end{aligned}
$$

Solution 2

Consider the linear-time property P over $A P=\{a, b\}$:
" $(\neg a \wedge \neg b)$ holds infinitely often and $(a \wedge b)$ never holds and between any two occurrences of $(\neg a \wedge \neg b)$, the number of states where b holds is even."

1. Provide an NBA \mathcal{A} over $2^{A P}$ such that $\mathcal{L}_{\omega}(\mathcal{A})=P$.

Hint: Parts (b) and (c) can be solved without a solution for part (a).
2. Formally prove or disprove the following statements:

- P is a safety property.
- P is a liveness property.

3. Let \mathcal{A}^{\prime} be an NBA over $2^{A P}$. Then $P^{\prime}=\mathcal{L}_{\omega}\left(\mathcal{A}^{\prime}\right)$ is the linear-time property defined by \mathcal{A}^{\prime}. Is it always the case that there exists an LTL-formula φ such that $P^{\prime}=\operatorname{Words}(\varphi)$? Justify your answer!

Solution:

1. An NBA \mathcal{A} over $2^{A P}$ with $\mathcal{L}_{\omega}(\mathcal{A})=P$ is depicted below:

2. P can be characterized by the ω-regular expression E derived as follows:

$$
\begin{aligned}
L_{q_{0}, q_{2}} & =(\{a\}+\{b\})^{\star} \cdot \emptyset \\
L_{q_{2}, q_{2}} & =\left(\{b\} \cdot\{a\}^{\star} \cdot\{b\} \cdot\{a\}^{\star}\right)^{\star} \cdot \emptyset \\
E & =L_{q_{0}, q_{2}} \cdot L_{q_{2}, q_{2}}^{\omega}=(\{a\}+\{b\})^{\star} \cdot\left(\emptyset \cdot\left(\{b\} \cdot\{a\}^{\star} \cdot\{b\} \cdot\{a\}^{\star}\right)^{\star}\right)^{\omega} .
\end{aligned}
$$

We disprove that P is

- a safety property: $\sigma=\emptyset\{a\}^{\omega} \in\left(2^{A P}\right)^{\omega} \backslash P$. Note that for all $\hat{\sigma} \in \operatorname{pref}\left(\emptyset\{a\}^{\omega}\right)$ it holds that $\hat{\sigma} . \emptyset^{\omega} \in P$. Thus no bad prefix exists for σ and P is not a safety property.
- a liveness property: $\{a, b\} \notin \operatorname{pref}(P)$. Hence $\operatorname{pref}(P) \neq\left(2^{A P}\right)^{\star}$.

3. No. LTL is strictly less expressive than the class of ω-regular languages. See Remark 5.43.

Solution 3

Let $\varphi=(a \wedge \bigcirc a) \mathrm{U}(a \wedge \neg \bigcirc a)$ be an LTL-formula over $A P=\{a\}$.

1. Compute all elementary sets with respect to φ.
2. Construct the GNBA \mathcal{G}_{φ} according to the algorithm from the lecture such that $\mathcal{L}_{\omega}\left(\mathcal{G}_{\varphi}\right)=\operatorname{Words}(\varphi)$.
3. Give an ω-regular expression E such that $\mathcal{L}_{\omega}\left(\mathcal{G}_{\varphi}\right)=\mathcal{L}_{\omega}(E)$.

Solution:

1. The elementary sets are:

	a	$\bigcirc a$	$a \wedge \bigcirc a$	$a \wedge \neg \bigcirc a$	φ
B_{1}	0	0	0	0	0
B_{2}	0	1	0	0	0
B_{3}	1	0	0	1	1
B_{4}	1	1	1	0	0
B_{5}	1	1	1	0	1

2. The GNBA $\mathcal{G}_{\varphi}=\left(Q, 2^{A P}, \delta, Q_{0}, \mathcal{F}\right)$ is defined by:

$$
\begin{aligned}
Q & =\left\{B_{1}, B_{2}, B_{3}, B_{4}, B_{5}\right\} \\
Q_{0} & =\left\{B_{3}, B_{5}\right\} \\
\mathcal{F} & =\left\{F_{\varphi}\right\} \\
F_{\varphi} & =\left\{B_{1}, B_{2}, B_{3}, B_{4}\right\}
\end{aligned}
$$

The transition relation δ is given by the following graph:

3. We derive $\mathcal{L}_{\omega}\left(\mathcal{G}_{\varphi}\right)=\operatorname{Words}(\varphi)=\{a\}^{+} \emptyset\left(2^{A P}\right)^{\omega}$.

Compute $\operatorname{Sat}_{\text {sfair }}(\Phi)$ for the CTL-formula Φ and the strong fairness assumption sfair:

$$
\begin{aligned}
\Phi & =\exists \square a \\
\text { sfair } & =\square \diamond a \rightarrow \square \diamond \exists(\neg a) \cup(\forall \bigcirc b)
\end{aligned}
$$

where $T S$ over $A P=\{a, b\}$ is given by:

Proceed in the following steps:

1. Determine $\operatorname{Sat}(\exists(\neg a) \cup(\forall \bigcirc b))$ (without fairness).
2. Determine $S a t_{\text {sfair }}(\exists \square$ true $)$.
3. Determine Sat $_{\text {sfair }}(\Phi)$.

Solution:

1. $\operatorname{Sat}(\exists(\neg a) \mathrm{U}(\forall \bigcirc b))$:

Consider the state subformula $\forall \bigcirc b$. Then $\operatorname{Sat}(\forall \bigcirc b)=\left\{s_{5}\right\}$.
Further, $\operatorname{Sat}(\neg a)=\left\{s_{0}, s_{1}, s_{2}, s_{5}\right\}$.
Using the backward search starting in s_{5} we derive $\operatorname{Sat}(\exists(\neg a) \mathrm{U}(\forall \bigcirc b))=\left\{s_{0}, s_{1}, s_{2}, s_{5}\right\}$.
Now we relabel states in $\operatorname{Sat}(a)$ with a_{1} and those in $\operatorname{Sat}(\exists(\neg a) \mathrm{U}(\forall \bigcirc b))$ with b_{1} to encode the strong fairness constraint in the transition system:

2. Compute Sat $_{\text {sfair }}(\exists \square$ true $)$:

- The SCCs of $G[$ true $]$ of $T S[$ true $]$ are:

$$
\begin{aligned}
& C_{1}=\left\{s_{0}, s_{3}\right\} \\
& C_{2}=\left\{s_{0}, s_{1}\right\} \\
& C_{3}=\left\{s_{3}, s_{4}\right\} \\
& C_{4}=\left\{s_{2}, s_{5}\right\} \\
& C_{1,2}=\left\{s_{0}, s_{1}, s_{3}\right\} \\
& C_{1,3}=\left\{s_{0}, s_{3}, s_{4}\right\} \\
& C_{1,2,3}=\left\{s_{0}, s_{1}, s_{3}, s_{4}\right\}
\end{aligned}
$$

Then $T=\left\{C_{1}, C_{2}, C_{1,2}, C_{1,2,3}, C_{4}\right\}$. Some examples for this:
$-C_{3} \notin T$ because $C_{3} \cap \operatorname{Sat}(a)=\left\{s_{3}\right\}$ but $C_{3} \cap \operatorname{Sat}(\exists(\neg a) \cup(\forall \bigcirc b))=\emptyset$.

- $C_{1} \in T$ because $C_{1} \cap \operatorname{Sat}(a)=\left\{s_{3}\right\}$ and also $C_{1} \cap \operatorname{Sat}(\exists(\neg a) \mathrm{U}(\forall \bigcirc b))=\left\{s_{0}\right\}$.

Then $\operatorname{Sat}_{\text {sfair }}(\exists \square$ true $)=\left\{s \in S \mid \operatorname{Reach}_{T S}(s) \cap \bigcup T \neq \emptyset\right\}=S$.
Extend the labeling accordingly by a fresh atomic proposition $a_{\text {fair }}$ (omitted here).
3. Compute $\operatorname{Sat}_{\text {fair }}(\exists \square a)$:

- Then $G[a]$ of $T S[a]$ is the graph

Further, there is only one SCC in $G[a]: C_{3}=\left\{s_{3}, s_{4}\right\}$. But as $C_{3} \notin T-C_{3}$ satisfies a_{1} infinitely often, but never b_{1} - it is not fair. Hence $\operatorname{Sat}_{\text {sfair }}(\exists \square a)=\emptyset$.

Solution 5a

$$
((2+1)+(3+3+1) \text { points })
$$

Consider the two transition systems $T S_{1}$ and $T S_{2}$:

1. Prove or disprove $T S_{1} \sim T S_{2}$.
2. Prove or disprove $T S_{1} \simeq T S_{2}$.

Solution:

1. $T S_{1} \nsim T S_{2}$:

A distinguishing CTL-formula is $\forall \square(a \rightarrow \exists \bigcirc(a \wedge b))$.
Then $T S_{1} \models \Phi$ and $T S_{2} \not \models \Phi$ (because of t_{1}).
2. $T S_{1} \simeq T S_{2}$:

- $T S_{1} \preceq T S_{2}$ with simulation relation $\mathcal{R}=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{4}\right),\left(s_{2}, t_{3}\right),\left(s_{3}, t_{5}\right)\right\}$:

$T S_{2}$:

- $T S_{2} \preceq T S_{1}$ with simulation relation $\mathcal{R}=\left\{\left(t_{0}, s_{0}\right),\left(t_{1}, s_{1}\right),\left(t_{2}, s_{1}\right),\left(t_{4}, s_{1}\right),\left(t_{3}, s_{2}\right),\left(t_{5}, s_{3}\right)\right\}$: $T S_{2}$:

Hence, $T S_{1} \preceq T S_{2}$ and $T S_{2} \preceq T S_{1}$. Therefore $T S_{1} \simeq T S_{2}$.

Let $\Phi=\forall a \mathrm{U}(\neg \exists \square b)$. Prove or disprove the following statement:
There exists an LTL-formula φ that is equivalent to Φ.

Solution:

Let $\Phi=\forall a \cup(\neg \exists \square b)$. Then $\varphi=a \mathbf{U} \neg \square b$ (by Thm. 6.18). We prove that $\Phi \equiv \varphi$:

$$
\begin{aligned}
s \models \Phi & \Longleftrightarrow \forall \pi \in \operatorname{Paths}(s) . \exists k \geq 0 .(\pi[k] \models \neg \exists \square b \wedge \forall j<k . \pi[j] \models a) \\
& \Longleftrightarrow \forall \pi \in \operatorname{Paths}(s) . \exists k \geq 0 .(\pi[k] \models \forall \diamond \neg b \wedge \forall j<k . \pi[j] \models a) \\
& \Longleftrightarrow \forall \pi \in \operatorname{Paths}(s) . \exists k \geq 0 .\left(\forall \pi^{\prime} \in \operatorname{Path} s(\pi[k]) . \exists i \geq 0 . \pi^{\prime}[i] \models \neg b \wedge \forall j<k . \pi[j] \models a\right) \\
& \Longleftrightarrow \forall \pi \in \operatorname{Paths}(s) . \exists k \geq 0 .(\pi[k] \models \diamond \neg b \wedge \forall j<k . \pi[j] \models a) \\
& \Longleftrightarrow s \models a \cup \diamond \neg b \\
& \Longleftrightarrow s \models a \cup \neg \square b .
\end{aligned}
$$

