Exam in Model Checking

March 31, 2006

Solution

Solution 1

(a) We start by computing the closure of φ :

$$
\begin{aligned}
\operatorname{closure}(\varphi)= & \{\text { true }, \text { false }, a, \neg a, \bigcirc a, \neg \bigcirc a, \\
& (a \wedge \bigcirc a), \neg(a \wedge \bigcirc a), \varphi, \neg \varphi\}
\end{aligned}
$$

The elementary sets are:

	true	a	$\bigcirc a$	$a \wedge \bigcirc a$	φ
B_{1}	1	0	0	0	1
B_{2}	1	0	1	0	1
B_{3}	1	1	0	0	0
B_{4}	1	1	1	1	0
B_{5}	1	1	1	1	1

(b) The GNBA $\mathcal{G}_{\varphi}=\left(Q, 2^{A P}, \delta, Q_{0}, \mathcal{F}\right)$ is defined by:

$$
\begin{aligned}
Q & =\left\{B_{1}, B_{2}, B_{3}, B_{4}, B_{5}\right\} \\
Q_{0} & =\left\{B_{1}, B_{2}, B_{5}\right\} \\
\mathcal{F} & =\left\{F_{(a \wedge ○ a) \cup \neg a}\right\} \\
F_{(a \wedge \bigcirc a) \cup \neg a} & =\left\{B_{1}, B_{2}, B_{3}, B_{4}\right\}
\end{aligned}
$$

The transition relation δ is given by the following graph representation:

Solution 2

We consider the maximal proper state subformulas $S u b(\Phi)$ ：
1．$\Psi=a: S a t(a)=\left\{s_{2}, s_{3}, s_{6}, s_{7}\right\}$
2．$\Psi=b: S a t(b)=\left\{s_{0}, s_{2}, s_{4}, s_{6}, s_{7}\right\}$
3．$\Psi=\exists \square b$ ：
The following equivalence is used to compute $\operatorname{Sat}(\exists \square b)$ ：

$$
s \models_{\mathrm{CTL}^{*}} \exists \varphi \Longleftrightarrow s \models_{\mathrm{CTL}^{*}} \neg \forall \neg \varphi \Longleftrightarrow s \not \models_{\mathrm{CTL}^{*}} \forall \neg \varphi \Longleftrightarrow \models_{\mathrm{LTL}} \neg \varphi
$$

According to the LTL semantics，we have $S a t^{\text {LTL }}(\neg \square b)=\operatorname{Sat}_{\mathrm{LTL}}(\diamond \neg b)=\left\{s_{0}, s_{1}, s_{2}, s_{3}, s_{5}\right\}$ ．Then， $S \backslash \operatorname{Sat}_{\mathrm{LTL}}(\neg \square b)=\left\{s_{4}, s_{6}, s_{7}\right\}$ is the satisfaction set $\operatorname{Sat}_{\mathrm{CTL}}{ }^{*}(\exists \square b)$ ：

$$
\operatorname{Sat}_{\mathrm{CTL}^{*}}(\exists \square b)=\left\{s_{4}, s_{6}, s_{7}\right\}
$$

The labeling is extended by a fresh atomic proposition $a_{\exists ロ b}$ according to $S a t_{\mathrm{CTL}^{*}}(\exists \square b)$ ．
The corresponding subformula $\exists \square b$ of Φ is replaced by $a_{\exists ロ b}$ ．

4．$\Psi=\exists \bigcirc\left(a \cup a_{\exists ロ b}\right)$ ：
The above equivalence for existentially quantified path formulas yields：

$$
s \models_{\mathrm{CTL}^{*}} \exists \bigcirc\left(a \cup a_{\exists ロ b}\right) \quad \Longleftrightarrow \quad s \not \models_{\mathrm{LTL}} \neg \bigcirc\left(a \cup a_{\exists \square b}\right)
$$

By the equivalence $\neg \bigcirc\left(a \cup a_{\exists ロ b}\right) \equiv \bigcirc \neg\left(a \cup a_{\exists ロ b}\right)$ ，the satisfaction set of $\neg\left(a \cup a_{\exists ロ b}\right)$ can be inferred：

$$
\begin{aligned}
\operatorname{Sat}_{\mathrm{LTL}}\left(\neg\left(a \mathrm{\cup} a_{\exists \square b}\right)\right) & =\left\{s_{0}, s_{1}, s_{2}, s_{5}\right\} \\
\operatorname{Sat}_{\mathrm{LTL}}\left(\bigcirc \neg\left(a \cup a_{\exists \square b}\right)\right) & =\left\{s_{0}, s_{2}\right\} \\
\operatorname{Sat}_{\mathrm{CTL}^{*}}\left(\exists \bigcirc\left(a \cup a_{\exists \square b}\right)\right) & =S \backslash S a t_{\mathrm{LTL}}\left(\bigcirc \neg\left(a \cup a_{\exists \square b}\right)\right) \\
& =S \backslash\left\{s_{0}, s_{2}\right\} \\
& =\left\{s_{1}, s_{3}, s_{4}, s_{5}, s_{6}, s_{7}\right\}
\end{aligned}
$$

The labeling is extended by a new atomic prop．$a_{\exists \bigcirc\left(a \cup a_{\exists ロ b}\right)}$ according to $S a t_{\mathrm{CTL}^{*}}\left(\exists \bigcirc\left(a \cup a_{\exists ロ b}\right)\right)$ ． Again，the corresponding subformula Ψ of Φ is replaced by $\left.a_{\exists \bigcirc(a \cup} a_{\exists \square \square}\right)$ ：

5．$\Psi=\forall \diamond \square a_{\exists \bigcirc\left(a \cup a_{\text {ヨロь }}\right)}$ ：
In the case of universal quantification，we can directly apply the LTL－semantics：

$$
\operatorname{Sat}_{\mathrm{LTL}}\left(\diamond \square a_{\exists \bigcirc\left(a \cup a_{\exists \square b}\right)}\right)=\left\{s_{0}, s_{1}, s_{3}, s_{4}, s_{6}, s_{7}\right\} .
$$

Because of $s_{5} \in Q_{0}$ ，but $s_{5} \notin S a t(\Phi)$ ，this yields $T S \not \vDash_{\mathrm{CTL}^{*}} \Phi$ ．

The two transition systems were given as follows:

(a) $T S_{1} \nsim T S_{2}$.

Argument: Consider the CTL-formula $\Phi=\exists \bigcirc(b \wedge \forall \bigcirc(a \wedge b))$.
Then $T S_{1} \models \Phi$ and $T S_{2} \not \models \Phi$. Therefore $T S_{1}$ and $T S_{2}$ cannot be bisimilar.
(b) $T S_{1} \simeq T S_{2}$. To show this, we consider the cases:

- $T S_{1} \preceq T S_{2}$:

Graphically, the simulation relation is outlined below:

$$
\mathcal{R}=\left\{\left(s_{1}, t_{1}\right),\left(s_{2}, t_{4}\right),\left(s_{2}, t_{2}\right),\left(s_{3}, t_{3}\right),\left(s_{4}, t_{3}\right),\left(s_{3}, t_{7}\right),\left(s_{1}, t_{6}\right),\left(s_{4}, t_{7}\right)\right\}
$$

- $T S_{2} \preceq T S_{1}$:

The simulation order can be outlined graphically as follows:

$$
\mathcal{R}=\left\{\left(t_{1}, s_{1}\right),\left(t_{2}, s_{2}\right),\left(t_{3}, s_{3}\right),\left(t_{4}, s_{2}\right),\left(t_{5}, s_{1}\right),\left(t_{6}, s_{1}\right),\left(t_{7}, s_{3}\right)\right\}
$$

$\Longrightarrow T S_{1} \simeq T S_{2}$.
(a) We first consider P_{1} :
(i) The linear time property P_{1} can be described by the following ω-regular expression:

$$
P_{1}=\mathcal{L}_{\omega}\left(\emptyset^{*} \cdot\{a\} \cdot(\emptyset+\{b\}+\{a, b\}+\{a\} \cdot\{b\})^{\omega}\right)
$$

(ii) According to Lemma 3.36, any LT-property can be decomposed into a safety and a liveness property:

$$
P=\underbrace{\operatorname{closure}(P)}_{P_{\text {safe }}} \cap \underbrace{\left(P \cup\left(\left(2^{A P}\right)^{\omega} \backslash \operatorname{closure}(P)\right)\right)}_{P_{\text {live }}} .
$$

Application to P_{1} yields

$$
\begin{aligned}
P_{\text {safe }}= & \operatorname{closure}(P) \\
= & \mathcal{L}_{\omega}\left(\emptyset^{*} \cdot\{a\} \cdot(\emptyset+\{b\}+\{a, b\}+\{a\} \cdot\{b\})^{\omega}+\emptyset^{\omega}\right) \\
P_{\text {live }}= & P \cup\left(\left(2^{A P}\right)^{\omega} \backslash \operatorname{closure}(P)\right) \\
= & P \cup\left(\left(2^{A P}\right)^{\omega} \backslash P_{\text {safe }}\right) \\
= & P \cup \bar{P}_{\text {safe }} \\
= & P \cup \mathcal{L}_{\omega}\left(\emptyset^{*} \cdot\{a\} \cdot\left(2^{A P}\right)^{*} \cdot\{a\} \cdot(\{a, b\}+\{a\}+\emptyset) \cdot\left(2^{A P}\right)^{\omega}\right) \\
& \cup \mathcal{L}_{\omega}\left(\emptyset^{*} \cdot(\{b\}+\{a, b\}) \cdot\left(2^{A P}\right)^{\omega}\right)
\end{aligned}
$$

(iii) Since $\operatorname{pref}\left(P_{\text {live }}\right)=\left(2^{A P}\right)^{*}, P_{\text {live }}$ is a liveness property.

As closure $(P)=\operatorname{closure}(\operatorname{closure}(P)), P_{\text {safe }}$ is a safety property.
(b) We consider each of the fairness assumptions \mathcal{F}_{i} for $i \in\{1,2\}$:

We have TS ${\models \mathcal{F}_{i}} P_{2}$ iff FairTraces $\mathcal{F}_{i}(T S) \subseteq P_{2}$. Because of $\stackrel{\infty}{\exists} k$. $A_{k}=\{a, b\}$, each trace has to visit at least one of s_{2} or s_{4} infinitely many times.
Additionally, from some point onwards, each a-state must be followed by a state that is annotated with (at least) b.

(i) $T S \models_{\mathcal{F}_{1}} P_{2}$:

- Any trace that reaches s_{4} is not \mathcal{F}_{1}-fair as α is executed only finitely many times. This is in contradiction to our $\mathcal{F}_{1, \text { ucond }}=\{\{\alpha\}\}$.
- Therefore $s_{3} \xrightarrow{\eta} s_{4}$ is never taken.
- Because of $\{\eta\} \in \mathcal{F}_{1, \text { strong }}$ and because η actions cannot be executed infinitely often (in fact, only once from s_{3} to s_{4}), the state s_{3} must not be visited infinitely often.
- The transitions $s_{1} \xrightarrow{\alpha} s_{1}$ and $s_{2} \xrightarrow{\alpha} s_{2}$ cannot be taken infinitely often because of the enabled γ transitions to s_{0} or s_{1}, respectively.
- As β is enabled in s_{0}, all \mathcal{F}_{1}-fair paths visit exactly s_{0}, s_{1} and s_{2} infinitely often.

Therefore FairTraces $\mathcal{F}_{1}(T S) \subseteq P_{2}$ and $T S \models \mathcal{F}_{1} P_{2}$.
(ii) $T S \not \models_{\mathcal{F}_{2}} P_{2}$:

Consider the path $\pi=\left(s_{0} s_{2} s_{3} s_{1}\right)^{\omega}$ with its corresponding trace $\sigma=(\{a\}\{a, b\} \emptyset\{b\})^{\omega}$.
We have $\pi \in$ FairPaths $_{\mathcal{F}_{2}}(T S)$, but $\sigma \notin P_{2}$.
\Longrightarrow FairTraces $\mathcal{F}_{2}(T S) \nsubseteq P_{2}$.

