

LEHRSTUHL FÜR INFORMATIK II 👩

RWTH Aachen · D-52056 Aachen · GERMANY

Winter term 2005/06

Prof. Dr. Ir. J.-P. Katoen

Exam in Model Checking March 31, 2006

Solution

(1+4+5 points)

Solution 1

(a) We start by computing the closure of φ :

$$closure(\varphi) = \{ \mathsf{true}, \mathsf{false}, a, \neg a, \bigcirc a, \neg \bigcirc a, \\ (a \land \bigcirc a), \neg (a \land \bigcirc a), \varphi, \neg \varphi \}$$

The elementary sets are:

	true	a	$\bigcirc a$	$a \wedge \bigcirc a$	φ
B_1	1	0	0	0	1
B_2	1	0	1	0	1
B_3	1	1	0	0	0
B_4	1	1	1	1	0
B_5	1	1	1	1	1

(b) The GNBA $\mathcal{G}_{\varphi} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$ is defined by:

$$\begin{split} Q &= \{B_1, B_2, B_3, B_4, B_5\}\\ Q_0 &= \{B_1, B_2, B_5\}\\ \mathcal{F} &= \big\{F_{(a \wedge \bigcirc a) \cup \neg a}\big\}\\ F_{(a \wedge \bigcirc a) \cup \neg a} &= \{B_1, B_2, B_3, B_4\} \end{split}$$

The transition relation δ is given by the following graph representation:

Solution 2

We consider the maximal proper state subformulas $Sub(\Phi)$:

- 1. $\Psi = a$: $Sat(a) = \{s_2, s_3, s_6, s_7\}$
- 2. $\Psi = b$: $Sat(b) = \{s_0, s_2, s_4, s_6, s_7\}$
- 3. $\Psi = \exists \Box b$:

The following equivalence is used to compute $Sat(\exists \Box b)$:

$$s\models_{\mathrm{CTL}^*}\exists\varphi\iff s\models_{\mathrm{CTL}^*}\neg\forall\neg\varphi\iff s\not\models_{\mathrm{CTL}^*}\forall\neg\varphi\iff s\not\models_{\mathrm{LTL}}\neg\varphi$$

According to the LTL semantics, we have $Sat_{LTL}(\neg \Box b) = Sat_{LTL}(\Diamond \neg b) = \{s_0, s_1, s_2, s_3, s_5\}$. Then, $S \setminus Sat_{LTL}(\neg \Box b) = \{s_4, s_6, s_7\}$ is the satisfaction set $Sat_{CTL^*}(\exists \Box b)$:

$$Sat_{CTL^*}(\exists \Box b) = \{s_4, s_6, s_7\}.$$

The labeling is extended by a fresh atomic proposition $a_{\exists \Box b}$ according to $Sat_{CTL^*}(\exists \Box b)$. The corresponding subformula $\exists \Box b$ of Φ is replaced by $a_{\exists \Box b}$.

4. $\Psi = \exists \bigcirc (a \bigcup a_{\exists \Box b}):$

The above equivalence for existentially quantified path formulas yields:

 $s \models_{\mathrm{CTL}^*} \exists \bigcirc (a \mathsf{U} a_{\exists \Box b}) \quad \Longleftrightarrow \quad s \not\models_{\mathrm{LTL}} \neg \bigcirc (a \mathsf{U} a_{\exists \Box b}).$

By the equivalence $\neg \bigcirc (a \bigcup a_{\exists \Box b}) \equiv \bigcirc \neg (a \bigcup a_{\exists \Box b})$, the satisfaction set of $\neg (a \bigcup a_{\exists \Box b})$ can be inferred:

$$Sat_{\text{LTL}}(\neg (a \cup a_{\exists \Box b})) = \{s_0, s_1, s_2, s_5\}$$

$$Sat_{\text{LTL}}(\bigcirc \neg (a \cup a_{\exists \Box b})) = \{s_0, s_2\}$$

$$Sat_{\text{CTL}^*}(\exists \bigcirc (a \cup a_{\exists \Box b})) = S \setminus Sat_{\text{LTL}}(\bigcirc \neg (a \cup a_{\exists \Box b}))$$

$$= S \setminus \{s_0, s_2\}$$

$$= \{s_1, s_3, s_4, s_5, s_6, s_7\}$$

The labeling is extended by a new atomic prop. $a_{\exists \bigcirc (a \cup a_{\exists \square b})}$ according to $Sat_{CTL^*}(\exists \bigcirc (a \cup a_{\exists \square b}))$. Again, the corresponding subformula Ψ of Φ is replaced by $a_{\exists \bigcirc (a \cup a_{\exists \square b})}$:

5. $\Psi = \forall \diamondsuit \Box a_{\exists \bigcirc (a \cup a_{\exists \Box b})}$:

In the case of universal quantification, we can directly apply the LTL-semantics:

$$Sat_{\mathrm{LTL}}(\Diamond \Box a_{\exists \bigcirc (a \cup a_{\exists \Box b})}) = \{s_0, s_1, s_3, s_4, s_6, s_7\}.$$

Because of $s_5 \in Q_0$, but $s_5 \notin Sat(\Phi)$, this yields $TS \not\models_{CTL^*} \Phi$.

Solution 3

The two transition systems were given as follows:

(a) $TS_1 \not\sim TS_2$.

Argument: Consider the CTL-formula $\Phi = \exists \bigcirc (b \land \forall \bigcirc (a \land b))$. Then $TS_1 \models \Phi$ and $TS_2 \not\models \Phi$. Therefore TS_1 and TS_2 cannot be bisimilar.

- (b) $TS_1 \simeq TS_2$. To show this, we consider the cases:
 - $TS_1 \preceq TS_2$: Graphically, the simulation relation is outlined below:

$$\mathcal{R} = \{(s_1, t_1), (s_2, t_4), (s_2, t_2), (s_3, t_3), (s_4, t_3), (s_3, t_7), (s_1, t_6), (s_4, t_7)\}$$

• $TS_2 \preceq TS_1$:

The simulation order can be outlined graphically as follows:

 $\mathcal{R} = \{(t_1, s_1), (t_2, s_2), (t_3, s_3), (t_4, s_2), (t_5, s_1), (t_6, s_1), (t_7, s_3)\}$

 $\implies TS_1 \simeq TS_2.$

Solution 4

- (a) We first consider P_1 :
 - (i) The linear time property P_1 can be described by the following ω -regular expression:

$$P_1 = \mathcal{L}_{\omega} \left(\emptyset^* \cdot \{a\} \cdot (\emptyset + \{b\} + \{a, b\} + \{a\} \cdot \{b\})^{\omega} \right)$$

 (ii) According to Lemma 3.36, any LT-property can be decomposed into a safety and a liveness property:

$$P = \underbrace{closure(P)}_{P_{safe}} \cap \underbrace{\left(P \cup \left(\left(2^{AP}\right)^{\omega} \setminus closure(P)\right)\right)}_{P_{live}}.$$

Application to P_1 yields

$$P_{safe} = closure(P)$$

$$= \mathcal{L}_{\omega} \left(\emptyset^* \cdot \{a\} \cdot (\emptyset + \{b\} + \{a, b\} + \{a\} \cdot \{b\})^{\omega} + \emptyset^{\omega} \right)$$

$$P_{live} = P \cup \left(\left(2^{AP} \right)^{\omega} \setminus closure(P) \right)$$

$$= P \cup \left(\left(2^{AP} \right)^{\omega} \setminus P_{safe} \right)$$

$$= P \cup \bar{P}_{safe}$$

$$= P \cup \mathcal{L}_{\omega} \left(\emptyset^* \cdot \{a\} \cdot \left(2^{AP} \right)^* \cdot \{a\} \cdot \left(\{a, b\} + \{a\} + \emptyset \right) \cdot \left(2^{AP} \right)^{\omega} \right)$$

$$\cup \mathcal{L}_{\omega} \left(\emptyset^* \cdot \left(\{b\} + \{a, b\} \right) \cdot \left(2^{AP} \right)^{\omega} \right)$$

- (iii) Since $pref(P_{live}) = (2^{AP})^*$, P_{live} is a liveness property. As closure(P) = closure(closure(P)), P_{safe} is a safety property.
- (b) We consider each of the fairness assumptions \mathcal{F}_i for $i \in \{1, 2\}$:

We have $TS \models_{\mathcal{F}_i} P_2$ iff $FairTraces_{\mathcal{F}_i}(TS) \subseteq P_2$. Because of $\exists k. A_k = \{a, b\}$, each trace has to visit at least one of s_2 or s_4 infinitely many times. Additionally, from some point onwards, each *a*-state must be followed by a state that is annotated with (at least) *b*.

- (i) $TS \models_{\mathcal{F}_1} P_2$:
 - Any trace that reaches s_4 is not \mathcal{F}_1 -fair as α is executed only finitely many times. This is in contradiction to our $\mathcal{F}_{1,ucond} = \{\{\alpha\}\}.$
 - Therefore $s_3 \xrightarrow{\eta} s_4$ is never taken.
 - Because of $\{\eta\} \in \mathcal{F}_{1,strong}$ and because η actions cannot be executed infinitely often (in fact, only once from s_3 to s_4), the state s_3 must not be visited infinitely often.
 - The transitions $s_1 \xrightarrow{\alpha} s_1$ and $s_2 \xrightarrow{\alpha} s_2$ cannot be taken infinitely often because of the enabled γ transitions to s_0 or s_1 , respectively.
 - As β is enabled in s_0 , all \mathcal{F}_1 -fair paths visit exactly s_0, s_1 and s_2 infinitely often.

Therefore $FairTraces_{\mathcal{F}_1}(TS) \subseteq P_2$ and $TS \models_{\mathcal{F}_1} P_2$.

(ii) $TS \not\models_{\mathcal{F}_2} P_2$:

Consider the path $\pi = (s_0 s_2 s_3 s_1)^{\omega}$ with its corresponding trace $\sigma = (\{a\}\{a,b\}\emptyset\{b\})^{\omega}$. We have $\pi \in FairPaths_{\mathcal{F}_2}(TS)$, but $\sigma \notin P_2$. $\Longrightarrow FairTraces_{\mathcal{F}_2}(TS) \not\subseteq P_2$.