

Winter term 2005/06

LEHRSTUHL FÜR INFORMATIK II

RWTH Aachen · D-52056 Aachen · GERMANY 🧲

Prof. Dr. Ir. J.-P. Katoen

Exam in Model Checking March 31, 2006

Family name:	
First name:	
r mot mannet	
Student number:	
Field of study:	□ Software Systems Engineering
	🗆 Informatik (Diplom)
	\Box Others:

Please note the following hints:

- Keep your student id card and a passport ready.
- The only allowed materials are
 - a copy of the lecture notes and
 - $-\,$ a copy of the lecture slides.

No other materials (i.a. exercises, solutions, handwritten notes) are admitted.

- This test should have five pages (including this cover sheet).
- Write your name and student number on every sheet.
- Also use the back side of the pages if needed.
- Write with blue or black ink; do not use a pencil.
- Any attempt at deception leads to failure for this exam, even if it is detected only later.
- The editing time is **90 minutes**.

Question	Possible	Received
1	10	
2	10	
3	10	
4	10	
Total	40	
Grade		

Question 1

(10 points)

Let $AP = \{a\}$ and $\varphi = (a \land \bigcirc a) \mathsf{U} \neg a$ an LTL-formula over AP.

- (a) Compute all elementary sets with respect to φ . Hint: There are five elementary sets.
- (b) Construct the GNBA \mathcal{G}_{φ} according to the algorithm from the lecture such that $\mathcal{L}_{\omega}(\mathcal{G}_{\varphi}) = Words(\varphi)$.

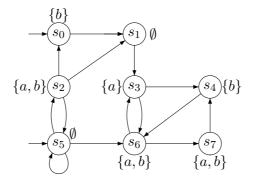
Student no.:

Question 2

Consider the CTL*-formula (over $AP = \{a, b\}$)

 $\Phi = \forall \Diamond \Box \exists \bigcirc (a \mathsf{U} \exists \Box b)$

and the transition system TS outlined below:



Apply the CTL* Model Checking Algorithm to compute $Sat(\Phi)$ and decide whether $TS \models \Phi$. *Hint:* You may infer the satisfaction sets for LTL formulas directly.

Note: In the lecture notes, there is a typo in the algorithm; the correct algorithm is given below where the missing negation symbol is highlighted.

Algorithm 1 CTL^{*} model checking algorithm (basic idea)

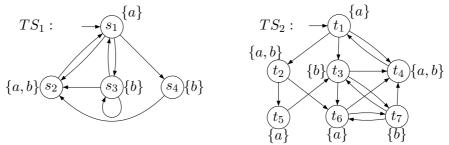
Require: finite transition system TS with initial states I, and CTL^* -formula Φ Ensure: $I \subseteq Sat(\Phi)$

for all $i \leq |\Phi|$ do for all $\Psi \in Sub(\Phi)$ with $|\Psi| = i$ do $\mathbf{switch}(\Psi)$: : $Sat(\Psi) := S;$ true $Sat(\Psi) := \{ s \in S \mid a \in L(s) \};$: a $a_1 \wedge a_2$: $Sat(\Psi) := Sat(a_1) \cap Sat(a_2);$ $Sat(\Psi) := S \setminus Sat(a);$ $\neg a$: $\exists \varphi$: determine $Sat_{LTL}(\varphi)$ by means of an LTL model-checker; $Sat(\Psi) := S \setminus Sat_{LTL}(\neg \varphi)$ (* correction *) : end switch $AP := AP \cup \{a_{\Psi}\};$ (* introduce fresh atomic proposition *) replace Ψ with a_{Ψ} forall $s \in Sat(\Psi)$ do $L(s) := L(s) \cup \{a_{\Psi}\}$; od end for end for return $I \subseteq Sat(\Phi)$

3

Name:

Consider the following transition systems TS_1 and TS_2 :



- (a) Decide whether $TS_1 \sim TS_2$. Explain your answer formally.
- (b) Decide whether $TS_1 \simeq TS_2$. Explain your answer formally.

Student no.:

Question 4

Let $AP = \{a, b\}.$

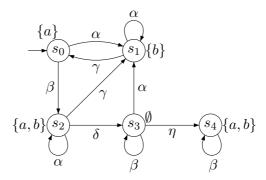
(a) P_1 denotes the linear time property that consists of all infinite words $\sigma = A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega}$ such that there exists $n \ge 0$ with

$$\forall j < n. \ A_j = \emptyset \quad \land \quad A_n = \{a\} \quad \land \quad \forall k > n. \ \left(A_k = \{a\} \Rightarrow A_{k+1} = \{b\}\right).$$

- (i) Give an ω -regular expression for P_1 .
- (ii) Apply the decomposition theorem and give ω -regular expressions for P_{safe} and P_{live} .
- (iii) Justify that P_{live} is a liveness and that P_{safe} is a safety property.
- (b) Now let P_2 denote the set of traces of the form $\sigma = A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega}$ such that

$$\stackrel{\infty}{\exists} k. A_k = \{a, b\} \quad \land \quad \exists n \ge 0. \forall k > n. (a \in A_k \Rightarrow b \in A_{k+1})$$

Consider the following transition system TS:



Consider the following fairness assumptions:

- (i) $\mathcal{F}_1 = (\{\{\alpha\}\}, \{\{\beta\}, \{\delta, \gamma\}, \{\eta\}\}, \emptyset)$. Decide whether $TS \models_{\mathcal{F}_1} P_2$.
- (ii) $\mathcal{F}_2 = \left(\{\{\alpha\}\}, \{\{\beta\}, \{\gamma\}\}\}\right)$. Decide whether $TS \models_{\mathcal{F}_2} P_2$.

Justify your answers!

(10 points)