Exam in Model Checking

February 10, 2006

Family name:

First name:

Student number:

\qquad

Please note the following hints:

- Keep your student id card and a passport ready.
- The only allowed materials are
- a copy of the lecture notes and
- a copy of the lecture slides.

No other materials (i.a. exercises, solutions, handwritten notes) are admitted.

- This test should have six pages (including this cover sheet).
- Write your name and student number on every sheet.
- Also use the back side of the pages if needed.
- Write with blue or black ink; do not use a pencil.
- Any attempt at deception leads to failure for this exam, even if it is detected only later.
- The editing time is $\mathbf{9 0}$ minutes.

Question	Possible	Received	
1	10		
2	10		
3	10		
4	10		
5	10		
Total	50		
Grade			

Question 1

Let P be a linear time property. Prove that closure (P) is a safety property.

Question 2

Let $\varphi=(a \rightarrow \bigcirc \neg b) \mathrm{W}(a \wedge b)$ and $P=W \operatorname{ords}(\varphi)$ where $A P=\{a, b\}$.
(a) Show that P is a safety property.
(b) Define an NFA \mathcal{A} with $\mathcal{L}(\mathcal{A})=\operatorname{BadPref}(P)$.
(c) Now consider $P^{\prime}=W \operatorname{ords}((a \rightarrow \bigcirc \neg b) \mathrm{U}(a \wedge b))$.

Decompose P^{\prime} into a safety property $P_{\text {safe }}$ and a liveness property $P_{\text {live }}$ such that

$$
P^{\prime}=P_{\text {safe }} \cap P_{\text {live }}
$$

Show that $P_{\text {safe }}$ is a safety and that $P_{\text {live }}$ is a liveness property.

Question 3

Let $\psi=\square(a \leftrightarrow \bigcirc \neg a)$ and $A P=\{a\}$.
(a) Show that ψ can be transformed into the following equivalent basic LTL-formula

$$
\varphi=\neg[\operatorname{true} \mathrm{U}(\neg(a \wedge \bigcirc \neg a) \wedge \neg(\neg a \wedge \neg \bigcirc \neg a))] .
$$

The basic LTL syntax is given by the following context free grammar:

$$
\varphi::=\operatorname{true}|a| \varphi_{1} \wedge \varphi_{2}|\neg \varphi| \bigcirc \varphi \mid \varphi_{1} \cup \varphi_{2}
$$

(b) Compute all elementary sets with respect to closure (φ) !

Hint: There are 6 elementary sets.
(c) Use the algorithm from the lecture to construct the $\operatorname{GNBA} \mathcal{G}_{\varphi}$ with $\mathcal{L}_{\omega}\left(\mathcal{G}_{\varphi}\right)=\operatorname{Words}(\varphi)$. Therefore

- define its set of initial states and its acceptance component.
- for each elementary set B, define $\delta(B, B \cap A P)$!

Question 4

Compute $\operatorname{Sat}_{\text {sfair }}(\Phi)$ for the CTL-formula Φ and the strong fairness assumption sfair:

$$
\begin{aligned}
\Phi & =\forall \square \forall \diamond a \\
\text { sfair } & =\square \diamond \underbrace{(b \wedge \neg a)}_{\Phi_{1}} \rightarrow \square \diamond \underbrace{\exists(b \mathrm{U}(a \wedge \neg b))}_{\Psi_{1}}
\end{aligned}
$$

where $T S$ over $A P=\{a, b\}$ is given by:

Therefore
(a) Determine $\operatorname{Sat}\left(\Phi_{1}\right)$ and $\operatorname{Sat}\left(\Psi_{1}\right)$ (without fairness).
(b) Determine Sat $_{\text {sfair }}(\exists \square$ true).
(c) Determine Sat $_{\text {sfair }}(\Phi)$.

Question 5

For all $0<i<j \leq 3$, prove or disprove $T S_{i} \sim T S_{j}$ either by providing a bisimulation relation or by providing a distinguishing $C T L$-formula Φ (i.e. $T S_{i} \models \Phi \Longleftrightarrow T S_{j} \not \vDash \Phi$), respectively:

