

RWTH Aachen · D-52056 Aachen · GERMANY

Winter term 2005/06

Prof. Dr. Ir. J.-P. Katoen

Exam in Model Checking February 10, 2006

Family name:

First name:

Student number:

Please note the following hints:

- Keep your student id card and a passport ready.
- The only allowed materials are
 - a copy of the lecture notes and
 - a copy of the lecture slides.

No other materials (i.a. exercises, solutions, handwritten notes) are admitted.

- This test should have six pages (including this cover sheet).
- Write your name and student number on every sheet.
- Also use the back side of the pages if needed.
- Write with blue or black ink; do not use a pencil.
- Any attempt at deception leads to failure for this exam, even if it is detected only later.
- The editing time is **90 minutes**.

Question	Possible	Received
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	
Grade		

(10 points)

Let P be a linear time property. Prove that closure(P) is a safety property.

(10 points)

Let $\varphi = (a \to \bigcirc \neg b) W(a \land b)$ and $P = Words(\varphi)$ where $AP = \{a, b\}$.

- (a) Show that P is a safety property.
- (b) Define an NFA \mathcal{A} with $\mathcal{L}(\mathcal{A}) = BadPref(P)$.
- (c) Now consider $P' = Words((a \to \bigcirc \neg b) U(a \land b))$. Decompose P' into a safety property P_{safe} and a liveness property P_{live} such that

$$P' = P_{safe} \cap P_{live}.$$

Show that P_{safe} is a safety and that P_{live} is a liveness property.

(10 points)

Let $\psi = \Box (a \leftrightarrow \bigcirc \neg a)$ and $AP = \{a\}$.

(a) Show that ψ can be transformed into the following equivalent basic LTL-formula

 $\varphi = \neg \left[\operatorname{true} \mathsf{U} \left(\neg \left(a \land \bigcirc \neg a \right) \land \neg \left(\neg a \land \neg \bigcirc \neg a \right) \right) \right].$

The basic LTL syntax is given by the following context free grammar:

 $\varphi ::= \mathsf{true} \mid a \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi_1 \mathsf{U} \varphi_2$

- (b) Compute all elementary sets with respect to $closure(\varphi)$! Hint: There are 6 elementary sets.
- (c) Use the algorithm from the lecture to construct the GNBA \mathcal{G}_{φ} with $\mathcal{L}_{\omega}(\mathcal{G}_{\varphi}) = Words(\varphi)$. Therefore
 - define its set of initial states and its acceptance component.
 - for each elementary set B, define $\delta(B, B \cap AP)$!

Compute $Sat_{sfair}(\Phi)$ for the CTL-formula Φ and the strong fairness assumption sfair:

$$\begin{split} \Phi &= \forall \Box \forall \diamondsuit a \\ sfair &= \Box \diamondsuit \underbrace{(b \land \neg a)}_{\Phi_1} \to \Box \diamondsuit \underbrace{\exists \left(b \mathsf{U}(a \land \neg b) \right)}_{\Psi_1} \end{split}$$

where TS over $AP = \{a, b\}$ is given by:

Therefore

- (a) Determine $Sat(\Phi_1)$ and $Sat(\Psi_1)$ (without fairness).
- (b) Determine $Sat_{sfair}(\exists \Box true)$.
- (c) Determine $Sat_{sfair}(\Phi)$.

(10 points)

(10 points)

For all $0 < i < j \leq 3$, prove or disprove $TS_i \sim TS_j$ either by providing a bisimulation relation or by providing a distinguishing CTL-formula Φ (i.e. $TS_i \models \Phi \iff TS_j \not\models \Phi$), respectively:

