

Written Examination

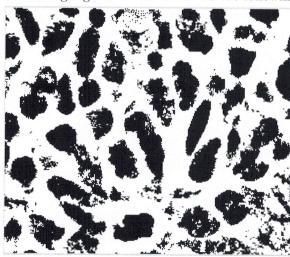
2014-02-04

Name:	First Name:
Program of Study:	
MatrNo.:	Exam #:

Information:

- Write your name and matriculation number on every sheet of paper.
- Answer each question on the provided sheet. If more space is needed, use a new sheet of paper for each question.
- If you have to draw to answer a question, multiple templates are provided. Cross out wrong answers!
- At the end of the examination this cover sheet together with the question sheets and al additionally used paper has to be returned.
- Duration of the exam: 60 minutes.
- No additional aids (notes, calculator, ...) are allowed.
- Use a pen with **blue or black ink** for writing down your solutions. Text written with pencils or red/green pens will not be graded.

With my signature I confirm that I have **read and understood** the information above.

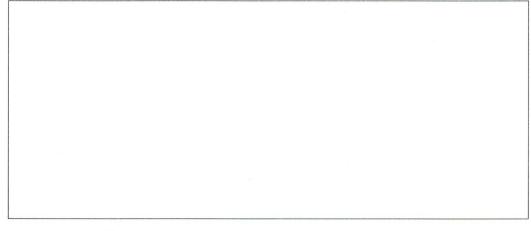

Signature	

Question:	1	2	3	4	5	Total
Points:	13	16	12	15	13	69
Score:						

Estan Auna

Name:	MatrNo.:	
Question 1	$(\Sigma=13)$	
(a) What is thresholding?		(2 pts
(b) Name two use-cases of thresholding.		(2 pts
(c) Describe Otsu's thresholding method.		(4 pts

(d) You have used a thresholding algorithm and obtained the following image:


i. We want to clean up the image using morphological operators. Explain how the (3 pts) morphological operators work.

ii Which aparator(a) would you use on this in a read al. 2 December 1

ii. Which operator(s) would you use on this image and why? Remember: Foreground (2 pts) are the black cells.

(a) List the steps of the k-Means algorithm.

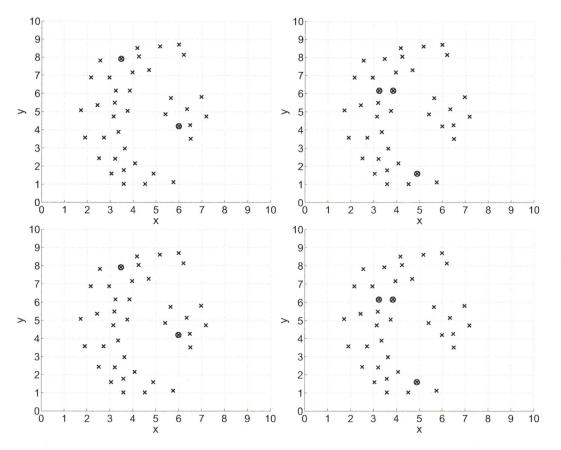
(4 pts)

(b) Properties of k-Means

(3 pts)

Will k-Means always converge?

○ Yes ○ No


Does k-Means always find the best solution with respect to its objective function?

○ Yes ○ No

Is the problem of finding the optimal solution NP-complete?

○ Yes ○ No

(c) Sketch the (approximate) cluster boundaries and their means k-Means would give for (4 pts) the following dataset for k = 2 (left) and k = 3 (right). The circled points are the initial means.

MatrNo.:	
es of k-Means.	(3 pt
~	
e used for image segmentation.	(2 pt
	es of k-Means.

Name:		MatrNo.:
· · · · · · · · · · · · · · · · · · ·		1/10011/0

Question $3\ldots (\Sigma=12)$

(a) Please fill in the following Matlab code fragment to complete the Hessian detector. (4 pts) (Pseudo-code is sufficient, as long it is unambiguously clear what is meant.)

```
1 function [px, py] = computeHessian(filename, sigma, thresh)
     I
                    = loadImage(filename);
                    = gaussianfilter(I, sigma); % Gaussian filter
6
     Iq
               [Ix, Iy]
     [Ixx, Ixy, Iyy] = gaussderiv2(I, sigma);
     % Compute Hessian score for each pixel
11
12
     [height, width] = size(I);
13
     score = zeros(height, width);
14
     for y = 1:height
         for x = 1:width
16
             Compute Hessian score for pixel I(y, x) and store it in
17
               score(y, x)
```

(b) The above code is still not fully correct. What is the error and how can it be fixed? (2 pts) (A verbal explanation is sufficient).

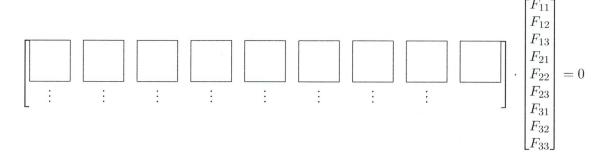
i. What image structure	s does the Hessian detector re-	act to?	
" D	1		
ii. Properties of Hessian	0.2		
Is the Hessian detect	or scale-invariant?	O Yes	O No
Is the Hessian detect	or rotation-invariant?	\bigcirc Yes	O No
iii. List 3 different compu	uter vision tasks for which H	essian interest poi	nts can be
used.		•	

Name:	MatrNo.:
Question 4	

Which property has to be fulfilled by the weak classifiers? (1 p		eps of the Adaboost training algorithm.	(3 pts
Which property has to be fulfilled by the weak classifiers? (1 p			
Thich property has to be fulfilled by the weak classifiers? (1 p			
Thich property has to be fulfilled by the weak classifiers? (1 p			
hich property has to be fulfilled by the weak classifiers? (1 p			
nich property has to be fulfilled by the weak classifiers? (1 p			
hich property has to be fulfilled by the weak classifiers? (1 p			
nich property has to be fulfilled by the weak classifiers? (1 p			
hich property has to be fulfilled by the weak classifiers? (1 p	-		
	. What is the input an	d what is the output of this algorithm?	(2 pts
	1		
ow is a test point classified? Give the equation (2 pt			
ow is a test point classified? Cive the equation (2 pt	hich property has to be	fulfilled by the weak classifiers?	(1 pt
ow is a test point classified? Give the equation (2 pt	Thich property has to be	e fulfilled by the weak classifiers?	(1 pt
ow is a test point classified? Give the equation (2 pt	hich property has to be	e fulfilled by the weak classifiers?	(1 pt
ow is a test point classified? Give the equation (2 pt	hich property has to be	fulfilled by the weak classifiers?	(1 pt
ow is a test point classified? Give the equation (2 pt	hich property has to be	fulfilled by the weak classifiers?	(1 pt
w is a test point classified. Give the equation.		C	
		C	(1 pt

N	0	m	0	
1	71	m	+	0

Λ/Ι	atr	. \	0
11	all	- N	().


i. Esse	ntial Matrix		

(4 pts)

(1 pt)

i. Fill in the first row of the following matrix in order to complete the Eight-point algorithm. Assume that the point correspondence is called (\mathbf{a}, \mathbf{b}) where $\mathbf{a} = (a_1, a_2)$ is located in the left image and $\mathbf{b} = (b_1, b_2)$ in the right image. (Hint: Use the derivation of the algorithm).

ii. How do we solve this equation? (Use more than a single word!)

iv.	What can happen if one correspondence is incorrect?	(1)
Ran	ak constraints of the Fundamental Matrix.	
	Justify why we know that the Fundamental Matrix has rank 2.	(2 p
ii.	What would happen if F had full rank?	(1 j
ii.	What would happen if F had full rank?	(1)
ii.	What would happen if F had full rank?	(1 ₁
ii.	What would happen if F had full rank?	(1 _]
ii.	What would happen if F had full rank?	(1]
ii.	What would happen if F had full rank?	(1)
	What would happen if F had full rank? How can we enforce the rank-2 constraint during Fundamental Matrix estimation?	(1 ₁)