Introduction to Artificial Intelligence (Fall 2001)

Exam

Last name:	enger era violicitud datdW (s Gen laver)
Given names:	11 What are the advantages are
Matriculation number:	Semester:
Software Systems Engineering (M. Sc.)	Informatik (Diplom)
other:	

Guidelines

Please read carefully.

- Do not forget to insert your name and matriculation number above.
- Use the space on the problem sheets for your solutions. You may also use the backsides of the sheets.
- If the space is not sufficient, you can use the additional solution sheet at the end of this exam, and, if necessary, obtain additional solution sheets from the persons in charge.
- Solutions on scribbling paper are not scored!
- You have 90 minutes to work on your solutions.
- No aids are allowed other than a dictionary.
- Do not write with a pencil!

Evaluation

Problem	Points	Result
1	21	
2	15	
3	15	
4	15	
5	10	
6	9	
7	15	
total:	100	

	grade:																							
--	--------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

a) Assume that the heuristic function h is not admissible.
Is A* still complete? Is A* still optimal? Justify your answers.

- b) What is the computational complexity of resolution for propositional logic? What is the computational complexity of resolution for first-order logic?
- c) Recall that " \models_c " denotes reasoning under the closed world assumption (CWA). How is " \models_c " defined formally, that is, what does "KB $\models_c \alpha$ " mean for arbitrary KB and α ?
- d) What is a "threat" in partial order planning?
- e) Which functions are representable by neural feed-forward networks with (at most) one hidden layer?
- f) What are the advantages and disadvantages of neural network learning compared to decision tree learning?
- g) Where does Bayesian update play a role in robotics?

In this problem a 3-player game is considered. Therefore the utility of a state no longer is a single value but a triple of values $\langle u_1, u_2, u_3 \rangle$ where u_i is the utility value of the state for player i.

a) Assume each player i chooses the move, hence the triple $\langle u_1,u_2,u_3\rangle$, that maximizes her own utility value u_i , e.g., for player $2\langle 0,4,6\rangle$ is better than $\langle 1,3,2\rangle$ since 4>3, but for player 1 (0,4,6) is worse than (1,3,2) since 0<1. Complete the following game tree by filling in the backed-up value triples for all the remaining nodes, including the root:

Which move will the first player choose (left/right)?

b) Now assume that player 1 and player 3 are playing together, that is, both choose the move that maximizes the sum of their utility values, e.g., for player 1 $\langle 0,4,6 \rangle$ now is better than $\langle 1,3,2 \rangle$ since 0+6>1+2. Player 2 chooses the move as in part a). Complete the following game tree by filling in the backed-up value triples for all the remaining nodes, including the root:

Which move will the first player choose (left/right)?

Use resolution to prove the following logical consequences:

a)
$$\{(P \supset Q), (P \supset R)\} \models (P \supset (Q \land R))$$

b)
$$\{ \forall x (P(x) \supset P(f(x))) \} \models ((\exists x P(x)) \supset (\exists x P(f(f(x)))))$$

Problem 4 (15 Points)

Assume there are three predicate symbols *Bird*, *Flies*, *Ab* and two constants *tweety* and *chilly* (and no other predicate or function symbols). Consider the following sets of sentences:

$$\begin{split} \mathrm{KB'} &= \{ \, \forall x [(Bird(x) \land \neg Ab(x)) \supset Flies(x)] \,, \\ &\quad Bird(tweety) \,, \\ &\quad \neg Ab(tweety) \, \} \\ \mathrm{DC} &= \{ \, \forall x [x = tweety \lor x = chilly] \, \} \\ \mathrm{KB} &= \mathrm{KB'} \cup \mathrm{DC} \end{split}$$

- a) Determine the set Negs(KB) which is used for reasoning under the closed world assumption.
- b) Prove that KB $\models_c (Bird(\tau) \supset Flies(\tau))$ for $\tau = tweety$ and $\tau = chilly$.
- c) Note that part b) shows that $KB \models_c \forall x [Bird(x) \supset Flies(x)]$. Is this true if KB is replaced by KB', i. e., if we do not make the domain closure assumption? Justify your answer.

Problem 5

On the right, a belief network is shown.

The prior probabilities for A and I are given

a) Compute $P(A, \neg B, C, D, H, \neg I)$.

b) Compute $P(A, \neg B, C, D, \neg I)$.

The CPTs for B, C, D and H are given by the following tables:

A	P(B)
Т	0.8	
F	0.3	

by P(A) = 0.2 and P(I) = 0.4.

H	$P(C \mid \ldots)$
Т	0.5
F	1.0

I	$P(D \mid \ldots)$
T	0.1
F	0.5

\overline{A}	I	$P(H \mid \ldots)$
Т	T	0.9
T	F	0.4
F	\mathbf{T}	0.7
F	F	0.0

H	
C	$\stackrel{\downarrow}{(D)}$
	H

(10 Points)

Introduction to Artificial Intelligence (Fall 2001)

Problem 6

Consider the same belief network as in the previous problem (shown on the right). Let $\mathbf{X} = \{A\}$ and $\mathbf{Y} = \{D\}$. For each of the following sets \mathbf{E} , state whether \mathbf{E} d-seperates \mathbf{X} and \mathbf{Y} . If so, justify your answer.

- a) $\mathbf{E} = \{\}$
- b) $\mathbf{E} = \{C\}$
- c) $\mathbf{E} = \{C, I\}$

(9 Points)

Problem 7 (15 Points)

Let $f(x_1, x_2)$ be the Boolean function described by the formula $(x_1 \equiv \neg x_2)$. (Here, as usual, 0 represents FALSE and 1 represents TRUE.)

- a) Is f linearly separable? Justify your answer.
- b) Design a feed-forward network which represents f using step-functions as activation functions. (Recall: $step_t(x) = 0$ if x < t and $step_t(x) = 1$ if $x \ge t$.)