Advanced Automata Theory 1st Exam

$14^{\text {th }}$ August 2018

Exercise 1 - Minimizing NTAs

An automata \mathcal{A} with 8 states is given.

a) Give a winning strategy for the spoiler or duplicator for the game $B G(\mathcal{A}, 1, \mathcal{A}, 4)$.
b) Give a winning strategy for the spoiler or duplicator for the game $B G(\mathcal{A}, 3, \mathcal{A}, 0)$.
c) Give two minimal NFAs $\mathcal{A}_{1} \neq \mathcal{A}_{\in}$ with $L\left(\mathcal{A}_{1}\right)=L\left(\mathcal{A}_{2}\right)$.

Exercise 2 - Learning DFAs

A sampleset $S=\left(S_{+}, S_{-}\right)$is given.
a) Give a 3 state DFA which accepts S.
b) Apply the RPNI-algorithm on the sampleset S.

Exercise 3 - Logic on words

$\Sigma=\{a, b, c\}$.
a) Give an LTL sentence recognizing

$$
L_{1}=\left\{w \in \Sigma^{*} \mid \text { the infix } b a \text { only appears once }\right\} .
$$

b) Give an FO sentence recognizing L_{1}.
c) Give an MSO sentence recognizing

$$
L_{2}=L\left((\Sigma c)^{+}\right) .
$$

Exercise 4-Tree languages

$\Sigma=\Sigma_{0} \cup \Sigma_{2}, \Sigma_{0}=\{a, b, c\}, \Sigma_{2}=\{f\}$.
a) Give a NTA recognizing

$$
T=\left\{t \in T_{\Sigma} \mid a b \text { is in } \operatorname{yield}(w)\right\}
$$

b) Give a NUTA recognizig:

$$
T=\left\{t \in T_{\Sigma} \mid t \text { has a path with at least one } b \text { and no } a \text { 's }\right\}
$$

Exercise 5-Transition Monoid

An automata \mathcal{A} with 3 states is given.

a) Give a graphical representation of the transition monoid of $\mathcal{A} M(\mathcal{A})$.
b) Give a non-trivial subgroup in $M(\mathcal{A})$ by listing the elements and identifying the neutral element.
c) Is there a star-free expression recognizing $L(\mathcal{A})$?

Exercise 6 - Pushdown-Automata

A pushdown system \mathcal{P} and a configuration set C is given.
a) Present a P-NFA recognizing C.
b) Apply the saturation algorithm from the lecture to construct a P-NFA recognizing $p r e_{P}^{*}(C)$. For each of the five transitions that are added, write down that transition and the corresponding pushdown rule.
c) Does $p_{0} b a \in \operatorname{pr} e_{P}^{*}(C)$ hold?

Exercise 7 - Logic on trees

Give an MSO sentence which recognizes (??)

Exercise 8-2-Register-Machine Reduction

Consider the modified 2-Register Machines which have no $\operatorname{DEC}\left(X_{i}\right)$. Show that the halting problem for these machines is decidable by giving a reduction to the emptiness problem of NFAs.

