First name Last name Matriculation number

Exercise 1 (4 + 5 + 4 + 6 + 5 = 24 points)

The following data structure represents polymorphic binary trees that contain values only in
special Value nodes that have a single successor:
data Tree a = Leaf | Node (Tree a) (Tree a) | Value a (Tree a)

Consider the tree t of characters on the right-hand side. / \

The representation of t as an object of type Tree Char -)

in Haskell would be: / \
(Node (Value ’a’ (Value ’b’ Leaf)) (Node (Node v ' e
Leaf Leaf) (Value ’c’ Leaf))) ‘ / \

Implement the following functions in Haskell.

(a) The function foldTree of type
(@a->b->b) > (b->b->b) >b ->Tree a ->b

works as follows: foldTree f g h x replaces all occurrences of the constructor Value in
the tree x by £, it replaces all occurrences of the constructor Node in x by g, and it replaces
all occurrences of the constructor Leaf in x by h. So for the tree t above,

foldTree (:) (++) [] t
should compute
((++) () 7a2 () ’p’ [1)) ((++) ((++) [1 [1) () ’c’ [1))),

which in the end results in "abc" (i.e., in the list [’a’,’b’,’c’]). Here, Value is replaced
by (:), Node is replaced by (++), and Leaf is replaced by [].

foldTree f g h (Value n x)
foldTree f g h (Node x y)
foldTree _ _ h Leaf =h

f n (foldTree f g h x)
g (foldTree f g h x) (foldTree f g h y)

First name Last name Matriculation number

(b) Use the foldTree function from (a) to implement the average function which has the
type Tree Int -> Int and returns the average of the values that are stored in the tree.
This should be accomplished as follows:

— Use foldTree with suitable functions as arguments in order to compute the sum of
the values stored in the trees.

— Use foldTree with suitable functions as arguments in order to compute the number
of Value-objects in the tree.

— Perform integer division with the pre-defined function div :: Int -> Int -> Int
on these values to obtain the result.

Here your function is required to work correctly only on those trees that contain the
constructor Value at least once.

average t = div (foldTree (+) (+) 0 t) (foldTree (\x y -> y+1) (+) 0 t)

First name Last name Matriculation number

(c¢) Consider the following data type declaration for natural numbers:
data Nats = Zero | Succ Nats

A graphical representation of the first four levels of the domain for Nats could look like this:

Succ (Succ Zero) Succ (Succ (Succ 1))
Succ Zero Succ (Succ 1)

Ze‘ro Succ L
1

Sketch a graphical representation of the first three levels of the domain for the data type
Tree Bool.

Node L (Value L 1) Node L (Node L 1)

Value | (Node L 1) Value | (Value L 1) Node | Leaf

Value | Leaf Node Leaf |

Value True L Node (Node L 1) L
Value False | Node (Value L 1) L

Value L L Leaf Node L L

\/

L

First name Last name Matriculation number

(d) We call a list ys of integers an n-times even product of a list xs if ys has length n and if
all elements of ys are even numbers that occur in xs. The goal of this exercise is to write
a function evenProducts :: [Int] -> Int -> [[Int]] that takes a list of integers xs
and a natural number n and returns a list that contains all n-times even products of xs.
For example, evenProducts [4,5,6] 2 = [[4,4], [4,6], [6,4], [6,6]].

The following declarations are already given:

evenProducts :: [Int] -> Int -> [[Int]]
evenProducts xs 0 = []
evenProducts xs 1 map (\z -> [z]) (filter even xs)

Please give the declaration of evenProducts for the missing case of numbers that are at
least 2. Perform your implementation only with the help of a list comprehension, i.e.,
you should use exactly one declaration of the following form:

evenProducts xs (n+2) = [... | ...]

evenProducts xs (n+2) = [y:ys | y <- xs, even y, ys <- evenProducts xs (n+1)]

First name Last name

Matriculation number

(e) We define the level n of a tree as the list of those values that are at distance n from the
root of the tree. Here, the root node has distance 0 from the root, and a non-root node
has distance n + 1 from the root if its parent node has distance n from the root.

Write a Haskell function level :: Tree a -> Int -> [a] which, given a tree t and a
natural number n, computes the list of all values in t that occur there at level n (with
repetition, i.e., a value should appear in the result list as many times as it appears on level

n).

As an example, consider again the tree t from the beginning of the exercise. Here we have

level t 2 = [’b?,’c’] and level t 7 = [].

level :: Tree a -> Int -> [a]
level t 0 = case t of Value x u -> [x]
> [

level t (n+l1l) = case t of Leaf -> []
Value x u => level u n

Node u v -> (level u n) ++ (level v n)

First name Last name Matriculation number

Exercise 2 (4 + 5 = 9 points)

Consider the following Haskell declarations for the fib function, which for a natural number x
computes the value fibonacci(z):

fib :: Int -> Int

fib 0 =0
fib 1 =1
fib (x+2) = fib (x+1) + fib x

(a)

Please give the Haskell declarations for the higher-order function f_fib corresponding to
fib, i.e., the higher-order function f_fib such that the least fixpoint of £ fib is fib. In
addition to the function declaration(s), please also give the type declaration of £ _fib. Since
you may use full Haskell for £_fib, you do not need to translate £ib into simple Haskell.

f_fib :: (Int -> Int) -> (Int -> Int)
f_fib fib 0 = 0

f_fib fib 1 1

f_fib fib (x+2) = fib (x+1) + fib x

We add the Haskell declaration bot = bot. For each n € N please determine which
function is computed by f_fib" bot. Here “f_fib™ bot” represents the n-fold application
of £_fib to bot, i.e., it is short for £ fib (f_fib ... (f_fib bot)...).

Vv
n times

Let f, :Z, — Z, be the function that is computed by f_fib™ bot.

Give f, in closed form, i.e., using a non-recursive definition. In this definition, you
may use the function fibonacci : N — N where fibonacci(x) computes the z-th Fibonacci
number. Here it suffices to give the result of your calculations. You do not need to present
any intermediate steps.

o [fibonacci(z), ifn>0and 0<z<n
(f£ib"(L))(x) —{ 1 otherwise

First name Last name Matriculation number

Exercise 3 (3 + 3 = 6 points)

Let Dy, Dy, D3 be domains with corresponding complete partial orders Cp,,Cp,,Cp,. As we

know from the lecture, then also C(p,xp,), is a complete partial order on (Dgy x Ds); .

Now let f: Dy — Dy and g : Dy — D3 be functions.
We then define the function h : Dy — (Dy x D3)) via h(z) = (f(z), g(z)).

(a) Prove or disprove: If f and g are strict functions, then also h is a strict function.

The statement does not hold. Consider the following counterexample: Dy = Dy = D3 =
B, and f =g = 1, g, . Obviously f and g are strict functions, i.e., f(Llg,) =g¢g(Llp,)=
1g, . However, we have h(lg,) = (1lg,,1s,) # L, x8B,), -

(b) Prove or disprove: If f and g are monotonic functions, then also h is a monotonic function.

Let x Cp, y. Then we have:

h(zx)
= (f(x),g(x)) f and g are monotonic, def. of C(p,xp,),
Cpoxns),. (f(Y),9())
= h(y)

Hence, also h is monotonic. O

First name Last name Matriculation number

Exercise 4 (4 + 5 = 9 points)
Consider the following data structure for polymorphic lists:

data List a = Nil | Cons a (List a)

(a) Please translate the following Haskell expression into an equivalent lambda term (e.g., using
Lam). Recall that pre-defined functions like odd or (+) are translated into constants of
the lambda calculus.

It suffices to give the result of the transformation.

let £ = \x -> if (odd x) then (\y -> x) else f ((+) x 3)
in f

fix (A\f z. if (odd x) (Ay.x) (f ((+) x 3)))

First name

Last name Matriculation number

(b) Let § be the set of rules for evaluating the lambda terms resulting from Haskell, i.e., §
contains at least the following rules:

fix — Af. f (fix f)

times 32 — 6

Now let the lambda term ¢ be defined as follows:

t = (Az.(fix Ag.x)) (Az.(times 3 2))

Please reduce the lambda term ¢ by WHNO-reduction with the —gs-relation. You have
to give all intermediate steps until you reach weak head normal form (and no further

steps).

(Az. (fix Ag.x)) (Az.(times 3 2))

fix (Ag. Az (times 3 2))

(M. f (£ix [)) (A\g. Az (times 3 2))

(Ag. Az. (times 3 2)) (fix (Ag. Az. (times 3 2)))
Az. (times 3 2)

First name Last name Matriculation number

10

Exercise 5 (10 points)

Use the type inference algorithm WV to determine the most general type of the following lambda
term under the initial type assumption Ay. Show the results of all sub-computations and unifi-
cations, too. If the term is not well typed, show how and why the W-algorithm detects this.

((Cons Az.x) y)

The initial type assumption Ay contains at least the following:

Ap(Cons) = Va. (a — (List a — List a))
Ap(z) = VYa.a
Ao(y) = Va.a

W(Ap, ((Cons A\z.z)y))
W(Ap, (Cons Az.zx))

W(Ay, Cons)
= (id, (by — (List by — List by)))
W(Ay, \x.x)

W(Ag + {x by},)

= (id, by)

— (id, (b — b))
mgu((by — (List by — List b)), ((by — by) — b3))
=[b1/(by — by), b3/(List (by — by) — List (by — bs)) |
= ([b1/(by — by), bs/(List (by — by) — List (by — by)) |, (List (by — by) — List (by — by)))
W(Ao, y)
= (id, by)
mgu((LiSt (bQ — bg) — List (bQ — bg)), (b4 — b5)) = [b4/LiSt (bQ — bg), b5/LiSt (bQ — bg)]
= ([b1/(by — ba), b3/(List (by — by) — List (by — by)), by/List (by — b), bs/List (by — ba) |,
List (by — b))

Resulting type: List (by — bo)

