
Functional Programming SuSe19
Exam 12.08.2019

aaProf. Dr. J. Giesl M. Hark

Exam in Functional Programming SuSe 19

First Name:

Last Name:

Matriculation Number:

Course of Studies (please mark exactly one):

◦ Informatik Bachelor ◦ Mathematik Master
◦ Informatik Master ◦ Software Systems Engineering Master
◦ Other:

Available Points Achieved Points
Exercise 1 38
Exercise 2 43
Exercise 3 24
Exercise 4 15
Sum 120

Notes:

• On all sheets (including additional sheets) you must write your first name, your last
name, and your matriculation number.

• Give your answers in readable and understandable form in either English or German.

• Use permanent pens. Do not use red or green pens and do not use pencils.

• Please write your answers on the exam sheets (also use the reverse sides).

• For each exercise part, give at most one solution. Cancel out everything else. Otherwise
all solutions of the particular exercise part will be evaluated with 0 points.

• If we observe any attempt of deception, the whole exam will be evaluated to 0 points.

• At the end of the exam, hand in all sheets together with the sheets containing the
exam questions.

I hereby confirm that I feel healthy
and able to participate in the exam.

Signature

1

Functional Programming SuSe19
Exam 12.08.2019

Name: Matriculation Number:

Exercise 1 (Programming in Haskell): (6 + 9 + 9 + 14 = 38 points)
We use the following data structure Graph a to represent undirected graphs in Haskell by a list of edges, where
the nodes are labeled by values of type a.

data Graph a = Edges [(a,a)]

So the edges are represented as pairs of type (a,a). For example, the graph from Fig. 1 can be represented
by:

gExmp :: Graph Int
gExmp = Edges [(1,2),(1,4),(1,5),(2,3),(2,4),(3,4),(4,5),(4,6)]

1

2

3

4

5

6

Figure 1: Graph of type Graph Int

In each of the following exercises you can use functions from the Haskell Prelude and from previous exercises
even if you did not implement them. Moreover, you can always implement auxiliary functions.

a) Write a Haskell–function neighbors and also give its type declaration. Its first argument is a graph
g::Graph a for a type a from the type class Eq, and its second argument is an element v::a. The call
neighbors g v then results in the list of nodes directly connected by an edge to v in g. For example,
neighbors gExmp 2 == [1,3,4]. The order of the resulting list is irrelevant and it does not matter if
the list contains duplicates.

2

Functional Programming SuSe19
Exam 12.08.2019

Name: Matriculation Number:

b) Consider the following function which computes a list of all values stored in a graph.

nodes :: Eq a => Graph a -> [a]
nodes (Edges es) = removeDuplicates (concat (map (\(x,y)->[x,y]) es))

where
removeDuplicates = foldr (\x ys -> x:(filter (x /=) ys)) []

Hence, nodes gExmp results in [1,2,4,5,3,6].

Write a Haskell–function existsPath and also give its type declaration. Its first argument is a graph
g::Graph a for a type a from the type class Eq, and its second and third argument are nodes v::a and
w::a. The call existsPath g v w results in True if and only if there is a path connecting v and w in g.
There is a path from v to w of at most length n if and only if v == w or there is a neighbor u of v and a
path of at most length n-1 from u to w. For example, existsPath gExmp 6 3 == True.

Note that a path from v to w exists if and only if there exists a path from v to w of at most length
(nodes g).

Hints:
• You may use the function nodes.

• The function elem::Eq a => a -> [a] -> Bool checks membership in a list, i.e., elem x xs ==
True if and only if x occurs in xs.

3

Functional Programming SuSe19
Exam 12.08.2019

Name: Matriculation Number:

c) Write a Haskell–function isConnected and also give its type declaration. Its only argument is g::Graph
a for a type a from the type class Eq. It returns True if and only if for every two elements v and w of
nodes g, we have existsPath g v w == True. For example, isConnected gExmp == True.

Hints:
• You may again use the function nodes from part b) of the exercise.

• List comprehensions are particularly suitable to compute all pairs (v,w) of (distinct) elements of
nodes g.

• The function and::[Bool] -> Bool conjuncts all elements in the input, e.g., and [True, True,
True] == True but and [True, False, True] == False.

d) Implement a function railNetwork::Graph String -> IO (). This function simulates a network of
railway connections as a Graph String between cities. The user can either add a connection to the
network or check if there exists a connection between two cities.

Furthermore, the following data declaration is given.

data NetworkInput = Track (String, String) | Connection (String, String) | Exit

When railNetwork g is called, it asks the user for an input. If the input is

• "Track:Start;End" then an edge from Start to End is added to g and the function railNetwork
calls itself on the transformed graph again.

• "Connection:Start;End" then the user is informed whether there is a path from Start to End in
g. The function railNetwork then calls itself again with the same argument.

• something else, then the program terminates.

In this exercise, you can assume that there is a function parseNetworkInput::String -> NetworkInput
that translates a String into a NetworkInput, i.e., parseNetworkInput "Track:Start;End" == Track
("Start", "End"), parseNetworkInput "Connection:Start;End" == Connection ("Start", "End"),
and parseNetworkInput s == Exit for all other strings s.

An example run should look as follows. Here, inputs of the user are written in italics.

*Main> railNetwork (Edges [])
Enter track or check connection

Track:Berlin;Wolfsburg

Track added
Enter track or check connection

Track:Wolfsburg;Cologne

4

Functional Programming SuSe19
Exam 12.08.2019

Name: Matriculation Number:

Track added
Enter track or check connection

Connection:Cologne;Berlin

There is a connection from Cologne to Berlin
Enter track or check connection

Connection:Cologne;Munich

This connection does not exist
Enter track or check connection

Stop

*Main>

Hints:
• The function putStrLn::String -> IO() prints a string and performs a line break.

• The function getLine::IO String reads a string from the keyboard.

5

Functional Programming SuSe19
Exam 12.08.2019

Name: Matriculation Number:

Exercise 2 (Semantics): ((9 + 11) + (5 + 7 + 4) + 7 = 43 points)
a) i) Let D be a domain and v a complete partial order on D. Let f : D → D be a continuous function

w.r.t. v and Fix(f) ⊆ D its set of fixpoints. Let v|Fix(f) be the restriction of v to Fix(f), i.e., for
every x, y ∈ Fix(f) let x v|Fix(f) y hold iff x v y. Prove that v|Fix(f) is complete on Fix(f).

ii) Let D be a domain, v a complete partial order on D, and f : D → D a continuous function w.r.t. v.
By i), f has a least fixpoint lfp f . Prove the following claim.

If d ∈ D with f(d) v d then lfp f v d.

Hints:
• Use the characterization of the least fixpoint from the Fixpoint Theorem and perform an induc-

tion proof.

6

Functional Programming SuSe19
Exam 12.08.2019

Name: Matriculation Number:

b) i) Consider the following Haskell function f:

f :: (Int, Int, Int) -> Int
f (x, y, 0) = 1
f (x, y, n) = x * f(x, y, n-1) + y * f(x, y, n-1)

Please give the Haskell declaration for the higher-order function ff corresponding to f, i.e., the
higher-order function ff such that the least fixpoint of ff is f. In addition to the function declara-
tion, please also give the type declaration for ff. You may use full Haskell for ff.

ii) Let φff be the semantics of the function ff. Give the definition of φmff(⊥) in closed form for any
m ∈ N, i.e., give a non-recursive definition of the function that results from applying φff m-times
to ⊥. Here, you should assume that Int can represent all integers, so no overflow can occur.

iii) Give the definition of the least fixpoint of φff in closed form.

7

Functional Programming SuSe19
Exam 12.08.2019

Name: Matriculation Number:

c) Consider the data type declarations on the left and, as an example, the graphical representation of the
first four levels of the domain for Nats on the right:

data Nats = Z | S Nats

data EncapsuledList a
= L [a]

S (S (S ⊥))S (S Z)

⊥

4th level

Z 2nd level

3rd level

1st level

S Z S (S ⊥)

S ⊥

Give a graphical representation of the first four levels of the domain for the type EncapsuledList Bool.

8

Functional Programming SuSe19
Exam 12.08.2019

Name: Matriculation Number:

Exercise 3 (Lambda Calculus): ((5 + 5) + 8 + 6 = 24 points)
a) Consider the following function computing the difference of two natural numbers (if the first argument is

not smaller than the second). Here, natural numbers are represented by the data structure Nats defined
by data Nats = Z | S Nats.

minus :: Nats -> Nats -> Nats
minus x Z = x
minus (S x) (S y) = minus x y

i) Please give an equivalent function in simple Haskell.

ii) Implement the function minus in the lambda calculus, i.e., give a lambda term q such that, for all
natural numbers m,n the term q (Sm Z) (Sn Z) can be reduced to{

Sm−n Z, if m ≥ n
bot, otherwise

via WHNO-reduction with the →βδ-relation and the set of rules δ as introduced in the lecture to
implement Haskell.

Hints:
• You can use infix notation for predefined functions like (&&) in both simple Haskell and the lambda

calculus.

• You do not have to use the transformation algorithms presented in the lecture. It is sufficient to
just give an equivalent simple program and an equivalent lambda term.

9

Functional Programming SuSe19
Exam 12.08.2019

Name: Matriculation Number:

b) Let
t = λ g n. if (n <= 0) 1 (g n)

and

δ = { if True→ λx y. x,

if False→ λx y. y,

fix→ λ f. f(fix f)}
∪ { x <= y → True | x ≤ y ∈ Z}
∪ { x <= y → False | x > y ∈ Z}

Please reduce fix t 0 by WHNO-reduction with the →βδ-relation. List all intermediate steps until
reaching weak head normal form, but please write “t” instead of

λ g n. if (n <= 0) 1 (g n)

whenever possible.

10

Functional Programming SuSe19
Exam 12.08.2019

Name: Matriculation Number:

c) Consider the representation of natural numbers in the pure lambda calculus presented in the lecture (i.e.,
n ∈ N is represented by the term n = λ f x. fn x) and the representation of Booleans (i.e., True = λ x y.x
and False = λ x y.y). Give a pure lambda term for the function isZero, such that isZero(λ f x. fn x)
can be reduced to False if n > 0 and to True if n = 0.

Explain your solution shortly. You may give a reduction sequence as explanation.

Hints:
• A function λ x.t where x does not occur as a free variable in the term t is a constant function. Then

applying λ x.t to a term multiple times still evaluates to t.

11

Functional Programming SuSe19
Exam 12.08.2019

Name: Matriculation Number:

Exercise 4 (Type Inference): (15 points)
Using the initial type assumption A0 := {f :: ∀a.a→ Int, g :: ∀a.a→ a→ a}, infer the type of the expression
λy.g (f y) using the algorithm W.
Hints:

• When writing W(A, t) = (θ, t), you do not have to give the full substitution θ, but it is enough to give
the parts of θ that concern the free variables in the type schemas of A.

12

