Functional Programming SuSel9
Exam 10.09.2019

LuFG

Informatik Il

Prof. Dr. J. Giesl M. Hark

Exam in Functional Programming SuSe 19

First Name:

Last Name:

Matriculation Number:

Course of Studies (please mark exactly one):

o Informatik Bachelor o Mathematik Master
o Informatik Master o Software Systems Engineering Master
o Other:

Available Points | Achieved Points
Exercise 1 40
Exercise 2 40
Exercise 3 22
Exercise 4 18
| Sum \ 120

Notes:

e On all sheets (including additional sheets) you must write your first name, your last
name, and your matriculation number.

e Give your answers in readable and understandable form in either English or German.
e Use permanent pens. Do not use red or green pens and do not use pencils.

e Please write your answers on the exam sheets (also use the reverse sides).

For each exercise part, give at most one solution. Cancel out everything else. Otherwise
all solutions of the particular exercise part will be evaluated with 0 points.

If we observe any attempt of deception, the whole exam will be evaluated to 0 points.

At the end of the exam, hand in all sheets together with the sheets containing the
exam questions.

I hereby confirm that I feel healthy
and able to participate in the exam.

Signature

Functional Programming SuSel9
Exam 10.09.2019

LuFG

Informatik Il

ame: Matriculation Number:

Exercise 1 (Programming in Haskell): (5 + 12 + 9 + 14 = 40 points)
We use the following data structure Tree a to represent binary trees in Haskell.

data Tree a = E | N a (Tree a) (Tree a)
For example, the tree from Fig. || can be represented by:

exTree :: Tree Int
exTree = N 16 (N 37 (N 19 EE) (N21 EE)) (N 25 (N2 EE) (N 12 E E))

N\
AW

Figure 1: Tree of type Tree Int

In each of the following exercises you can use functions from the Haskell Prelude and from previous exercises
even if you did not implement them. Moreover, you can always implement auxiliary functions.

a) Declare Tree a as an instance of the type class Ord whenever a is an instance of Ord. In this instance
declaration, you should provide an implementation of the function <= to compare two trees. For two
non-empty trees t1 and t2, we have t1 <= t2 if and only if the value of t1’s root node is smaller or
equal to the value of t2’s root node. For example, (exTree <= N 19 E E) == True but (N 19 E E <=

exTree) == False, as (19 <= 16) == False. Furthermore, (t <= E) == True for any t::Tree a but
(E <= t) == True if and only if t ==
Hints:

e You can assume that Tree a is an instance of Eq whenever a is an instance of Eq.

Functional Programming SuSel9
Exam 10.09.2019

LuFG

Informatik Il

ame: Matriculation Number:

b) A heap is a binary tree in which a value stored at a node is greater or equal to all values stored in its
children. For example, the tree in Fig. [[]is not a heap, as (16 >= 37) == False. However, the subtree
of the tree in Fig. [I] with root 25 is a heap, as (26 >= 2) == True and (25 >= 12) == True. Note that
the root node of a heap contains the maximal value stored in the heap. The empty tree E is also a heap.

Write a Haskell-function heapify and also give its type declaration. Its only argument is an element
t::Tree a for a type a of the type class Ord. The call heapify t for some t::Tree a results in a tree
h::Tree a which stores exactly the same values as t but is also a heap. If a value is stored n times in
t, then it is also stored n times in heapify t.

For a tree N v 1 r, your implementation should check if v is greater or equal to the values stored in 1
and r, respectively. If yes, the result is N v 1h rh, where 1h is 1 transformed into a heap and rh is r
transformed into a heap. If no, then swap v and the maximal value of the tree. Afterwards, call heapify
on the subtree where v was swapped to in order to ensure that the result is a heap.

For example, heapify exTree results in the tree in Fig. 2]

VAN
/\ /N

Figure 2: Heapified version of Fig.

Functional Programming SuSel9
Exam 10.09.2019

LuFG

Informatik Il

ame: Matriculation Number:

c¢) For the following exercise, assume that there is a function deleteRoot::0rd a => Tree a -> Tree a.
For a given heap h with h /= E, the call deleteRoot h results in a heap storing exactly the same values
as h without its root node. Again, if a value is stored n times in h without its root node, then the value
is also stored n times in deleteRoot h. Furthermore, assume that there is a function insert::a ->
Tree a -> Tree a that inserts a value into a tree.

Write a Haskell-function heapsort and also give its type declaration. Its only argument is a list xs: : [a]
for a type a of the type class Ord. The function heapsort sorts xs in decreasing order by first transforming
it into a heap. Then, it extracts the maximal value of the heap by using deleteRoot and adds this value
to the resulting list. This is repeated until the heap is empty.

Hints:

e You can use the functions heapify, insert, and foldr to transform a list into a heap.

d) Implement a function participants::[(String, String)] -> I0 (). This function simulates an in-
teractive system for managing participants encoded as pairs (surname, first_name).

When participants xs is called, it asks the user for an input. If the input is

e "get" then the user can enter a value k: : Int and gets the kth name when sorting the participants
w.r.t. surnames in decreasing order. Participants with the same surnames are sorted by their first
names. The first participant has the index 0. If there are less than k+1 participants, an error
message is prompted. Then participants calls itself again with the same argument.

e "add", then the user enters first the surname and then the first name of the participant to be added.
Then participants prompts a success message and calls itself again with the list resulting from
xs when adding the entered participant.

e In any other case the program terminates.

An example run should look as follows. Here, inputs of the user are written in italics.

*xMain> participants []
Add participant or get kth?

add
Giesl
Juergen

Added participant
Add participant or get kth?

add
Mueller
Julia

Added participant
Add participant or get kth?

LuFG

Informatik Il

ame:

Functional Programming SuSel9
Exam 10.09.2019
Matriculation Number:

get
2

Not enough participants
Add participant or get kth?

get
1

Giesl, Juergen
Add participant or get kth?

Stop

*Main>

Hints:

The function putStrLn: :String -> I0() prints a string and performs a line break.
The function getLine::I0 String reads a string from the keyboard.
You can assume that there is a function getInt::I0 Int that reads an integer from the keyboard.

You can use the indexing operator (!!)::[a]l] -> Int -> a. Here, xs!!k gives the kth element of
the list xs whenever k is between 0 and (length xs)-1.

You can use the function heapsort to sort the list of participants in decreasing order. The reason
is that for two pairs (s1,s2), (t1,t2) :: (String,String) we have (s1,s2) <= (t1,t2) iff s1 <=
tlor s1 == t1 and s2 <= t2. Strings are compared as usual by <=.

Functional Programming SuSel9
Exam 10.09.2019

LuFG

Informatik Il

ame: Matriculation Number:

Exercise 2 (Semantics): ((104+7) + (54+ 7 + 4) + 7 = 40 points)

a) i) Prove the following generalization of the Fixpoint Theorem. Let D be a domain, C a complete
partial order on D, f : D — D a continuous function w.r.t. =, and d € D. If d C f(d) then
p* =U{f™(d) | n € N} satisfies the following:

e The element p* is a fixpoint of f.
e For every fixpoint p of f with d C p we have p* C p.
Hints:

e You do not have to show that LI{f"(d) | n € N} exists, i.e., that {f™(d) | n € N} is indeed a
chain.

Functional Programming SuSel9
Exam 10.09.2019

LuFG

Informatik Il

ame: Matriculation Number:

ii) Let D be a domain, C a complete partial order on D, and f : D — D a continuous function w.r.t. C.
By the Fixpoint Theorem, f has a least fixpoint lfp f. Disprove the following claim by giving a
counterexample:

If d € D with d C f(d) then d C lfp f.

Hints:

e You also have to show that your counterexample meets the requirements, i.e., that the chosen
order is complete, that your function f is continuous, and that your chosen d € D satisfies

dC f(d).
e You may use that any flat domain with the order z C y iff t = y Vz = L is complete.

e On flat domains, continuity and monotonicity are equivalent.

b) i) Consider the following Haskell function f:
f :: (Int, Int) -> Int

f (n, 0) =1
f (0, k) =0
f (n, k) = £f(n-1, k) + f(n-1, k-1)

Please give the Haskell declaration for the higher-order function £ff corresponding to f, i.e., the
higher-order function ff such that the least fixpoint of £f is f. In addition to the function declara-
tion, please also give the type declaration for £f. You may use full Haskell for ff.

Functional Programming SuSel9
Exam 10.09.2019

LuFG

Informatik Il

ame: Matriculation Number:

ii) Let ¢ be the semantics of the function £ff. Give the definition of ¢f;(L) in closed form for any
m € N, i.e., give a non-recursive definition of the function that results from applying ¢¢s m-times
to L. Here, you should assume that Int can represent all integers, so no overflow can occur.

Hints:
e The binomial coefficient (Z) for n € N, k € Z is defined as follows:

(">: g, 0<k<n
k 0, k<Oork>n

e Forn € N, k € Z we have (nzl) = (Z) + (kﬁl)'

iii) Give the definition of the least fixpoint of ¢¢¢ in closed form.

Functional Programming SuSel9
Exam 10.09.2019

LuFG

Informatik Il

ame: Matriculation Number:

c) Consider the data type declarations on the left and, as an example, the graphical representation of the
first three levels of the domain for Nats on the right:

SZ S(sL) 37 level

S 1
data Tree a = E | N a (Tree a) (Tree a)
’ \ /
1

Give a graphical representation of the first three levels of the domain for the type Tree Unit.

]
N
n
=
[
ct
n

data Nats

274 Jevel

I
[en}

data Unit

15t level

Functional Programming SuSel9
Exam 10.09.2019

LuFG

Informatik Il

ame: Matriculation Number:

Exercise 3 (Lambda Calculus): ((4 + 4) + 8 + 6 = 22 points)

a) Consider the following function that determines whether the first list is shorter or as long as than the
second. Here, lists are represented by the data structure List a defined by data List a =N | C a
(List a).

cp :: List a -> List a -> Bool
cp N ys = True

cp (C x xs) N = False

cp (Cx xs) (Cyys) =cp xs ys

i) Please give an equivalent function in simple Haskell.

ii) Implement the function cp in the lambda calculus, i.e., give a lambda term ¢ such that, for all lists
1,15 the term ¢ I I3 can be reduced to True if and only if /1 is at most as long as I, and to False
otherwise.

Hints:

e You do not have to use the transformation algorithms presented in the lecture. It is sufficient to
just give an equivalent simple program and an equivalent lambda term.

e You can use infix notation for predefined functions like (&&) in both simple Haskell and the lambda
calculus.

10

Functional Programming SuSel9
Exam 10.09.2019

LuFG

Informatik Il

ame: Matriculation Number:

b) Let
t=Agn.if (n==0) (A\z.True) (Az.g 0)

and

= {if True — Az y.z,
if False — Az y.y,

fix = A f. f(fix f)}
U{z==y— True|z,y€Z,x =y}
U { ==y — False|z,y € Z,x #y}

Please reduce fix ¢ 1 by WHNO-reduction with the —gs-relation. List all intermediate steps until
reaching weak head normal form, but please write “t” instead of

A g n. if (n == 0) (Az.True) (Az.g 0)

whenever possible.

11

Functional Programming SuSel9
Exam 10.09.2019

LuFG

Informatik Il

Name: Matriculation Number:

c) Consider the representation of natural numbers in the pure lambda calculus presented in the lecture (i.e.,
n € N is represented by the term @ = A f z. f™). Give a pure lambda term for the function minus,

m—n, ifn<m

such that for m,n € N the expression minus m 7 can be reduced to {

9
, otherwise.

Explain your solution shortly. You may give a reduction sequence as explanation.
Hints:
e You can assume that there is a pure lambda term pred such that pred m can be reduced to
n—1, ifn>0
{O, ifn=0.

12

Functional Programming SuSel9
Exam 10.09.2019

LuFG

Informatik Il

ame: Matriculation Number:

Exercise 4 (Type Inference): (18 points)

Using the initial type assumption Ag := {f :: Va.a — a, g :: Va.Bool — a — a}, infer the type of the expression
Az.g (f z) x using the algorithm W.
Hints:

e When writing W(A,t) = (0,t), you do not have to give the full substitution 6, but it is enough to give
the parts of 6 that concern the free variables in the type schemas of A.

13

