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Introduction to Optimization Problem Statement
Preliminaries
Main Optimality Conditions

Problem Statement

Nonlinear Programming

We consider the problem
min f(x)
where

» f :R™ — R is a continuous (and usually differentiable)
function of n variables z € R™

» X = R"™ or (more generally) X is a subset of R™.

» If X = R™, the problem is called unconstrained

» If f is linear and X is polyhedral, the problem is a linear
programming problem. Otherwise it is a nonlinear programming
problem.
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Problem Statement — Constrained

Constrained Problem

We consider the problem

min  f(z)
subject to h(x) = 0,
g(x) <0

where f : R™ - R, h : R™ — R™, and g : R™ — R" are
continuously differentiable functions.

Here
» h = (h1,ha,...,hy) are the equality constraints, and

» g = (91,92, . ., gr) are the inequality constraints.
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Preliminaries
Main Optimality Conditions

Two Main Issues

» Characterization of minima
» Necessary conditions
» Sufficient conditions
» Lagrange multiplier theory
» Sensitivity
» Duality

» Computation by iterative algorithms

» lterative descent
» Approximation methods
» Dual and primal-dual methods
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Introduction to Optimization

Local and Global Minima

f(x)

Problem Statement
Preliminaries
Main Optimality Conditions

Strict Local

Minimum

Local Minima Strict Global

Minimum
Quelle: Bertsekas

Unconstrained local and global minima in one dimension
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Local and Global Minima

Definitions

» A point * is an unconstrained local minimum of f if there
exists and € > 0 such that

f(@*) < f(@), Vo with ]z — 2*|| < €.
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Local and Global Minima

Definitions

» A point * is an unconstrained local minimum of f if there
exists and € > 0 such that

f@) < f(x), Y with ||z — 27| < e
» A point x* is a strict unconstrained local minimum of f if

there exists and € > 0 such that
f(x*) < f(x), Vz #x* with ||z —x*|| < e
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Local and Global Minima

Definitions

» A point * is an unconstrained local minimum of f if there
exists and € > 0 such that

f(@*) < f(@), Vo with ]z — 2*|| < €.

» A point x* is a strict unconstrained local minimum of f if
there exists and € > 0 such that

f(x*) < f(x), Va #x* with ||z —z*|| <e.

» A point * is a global minimum of f if
f(z*) < f(z), Vo eR™
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Taylor Expansion

Taylor's Theorem

Suppose that f : R™ — R is continuously differentiable and that
p € R™. Then we have that

f(xz+p) = f(=) + V(= +tp)Tp,
for some t € [0, 1].
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Taylor Expansion

Taylor's Theorem

Suppose that f : R™ — R is continuously differentiable and that
p € R™. Then we have that

f(xz+p) = f(=) + V(= +tp)Tp,
for some t € [0, 1].

Moreover, if f is twice continuously differentiable, we have that
f(x+p) = f(z) +p" Vf(z) + 307 V2f(z +tp)p
for some t € [0, 1], and that

f(z+p) = f(x) +p" VF(2) + 507 V2f(2) p + O(lpl?).
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Special Case: Quadratic Cost Functions

Given A € R™*™ b € R"™, and ¢ € R, we define the quadratic
form

flx) = %.’BTA(I} —xTb+c
where z € R™.

Example in R?

O Fr N W N G

-4

BS54 3 2 1 0 1 2 3 4 s
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Quadratic Cost Functions: Geometric Meaning

Quadratic forms for A:

f(@)
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Z1
Quelle: J.R. Shewchuk
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Quadratic Cost Functions: Geometric Meaning

Quadratic forms for A:

(a) positive-definite
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Quadratic Cost Functions: Geometric Meaning

Quadratic forms for A:
(a) positive-definite
(b) negative-definite

f(@)

Z1
Quelle: J.R. Shewchuk
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Quadratic Cost Functions: Geometric Meaning

Quadratic forms for A:
(a) positive-definite
(b) negative-definite

(c) indefinite (and
positive-indefinite)

f(@)

Z1
Quelle: J.R. Shewchuk
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Quadratic Cost Functions: Geometric Meaning

(a)
(b)
()

(d)

Quadratic forms for A:

positive-definite
negative-definite
indefinite (and
positive-indefinite)

indefinite

Quelle: J.R. Shewchuk
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Quadratic Cost Functions: An Important Property

If fis a quadratic form and A is s.p.d., then
. .
" = arg min f(z)
solves the linear system Ax = b, that is

Az* =b <& x* =arg min f(x).
TER™

Proof

» Second Order Sufficient Condition

» Consider pertubation & + p, p € R™
Note:

» Solution of linear system Ax = b "reduces” to solving an
optimization problem (— Conjugate Gradient Method).
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Gradient and Directional Derivative

Recall that the derivative of f(x,y) : R2 — R along the

» x-direction (i.e. keeping y constant) is %

» y-direction (i.e. keeping x constant) is ?)TJ:
and the gradient is given by Vf = [2L 21T

ox Oy
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Gradient and Directional Derivative

Recall that the derivative of f(x,y) : R2 — R along the
» x-direction (i.e. keeping y constant) is %
» y-direction (i.e. keeping x constant) is ?)TJ:

and the gradient is given by Vf = [% g—?’:]T.

Directional Derivative

The directional derivative of a function f : R™ — R in the
direction p is given by

Vpf(x) := !

For f continuously differentiable, we have

Vpf(z) = Vf(z)"p.

o JF(x + ep) — f(w)_

—0 €
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Perpendicularity of V f(x) to the level curve

» Consider any point xg and the level curve of f through xg.
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Perpendicularity of V f(x) to the level curve

» Consider any point xg and the level curve of f through xg.

» Then the gradient of f at xo, V f(xo), is perpendicular to the
tangent direction of the contour at xg.
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Perpendicularity of V f(x) to the level curve

» Consider any point xg and the level curve of f through xg.

» Then the gradient of f at xo, V f(xo), is perpendicular to the
tangent direction of the contour at xg.

» Two ways to see this:
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Perpendicularity of V f(x) to the level curve

» Consider any point xg and the level curve of f through xg.

» Then the gradient of f at xo, V f(xo), is perpendicular to the
tangent direction of the contour at xg.

» Two ways to see this:

» Intuitively, the value of f does not change along the tangent, so
the gradient must be in the perpendicular direction.
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Perpendicularity of V f(x) to the level curve

» Consider any point xg and the level curve of f through xg.

» Then the gradient of f at xo, V f(xo), is perpendicular to the
tangent direction of the contour at xg.

» Two ways to see this:

» Intuitively, the value of f does not change along the tangent, so
the gradient must be in the perpendicular direction.

» More formally, along the tangent, the value of f does not change
since we are moving along the contour.
=> The directional derivative is zero along p, if p is in the
direction of the tangent, that is

Vpf(x) =p" Vf(z) =0
and thus V f(x) is perpendicular to p.
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Convex Sets

Let C be a subset of R™. We say that C' is convex if
ar+ (1—a)y e C, Vx,y € C, Va € [0,1].

ax+(1-a)y, 0<a<1 i i

Convex Sets Nonconvex Sets
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Convex Functions

Definition

Let C be a convex subset of R™. A function f : C — R is called
convex if

f(am + (1 - a)y) S af(a:) + (1 - a)f(y)’ ‘v’m,y € C7 Va € [0’ 1]'
The function f is called concave if — f is convex.

af(x) + (1 - a)f(y)

) P
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Necessary Optimality Conditions

First Order Necessary Conditions

Let * be an unconstrained local minimum of f : R™ — R, and
assume that f is continuously differentiable in an open
neighbourhood of x*, then

Vf(x*) =0.
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Necessary Optimality Conditions

First Order Necessary Conditions

Let * be an unconstrained local minimum of f : R™ — R, and
assume that f is continuously differentiable in an open
neighbourhood of x*, then

Vf(xz*) =0.

Second Order Necessary Conditions

Let * be an unconstrained local minimum of f : R™ — R, and
assume that f is twice continuously differentiable in an open
neighbourhood of x*, then
Vf(x*)=0
and
V?2f is positive semidefinite.
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The Case of a Convex Cost Function

Convex Cost Function

When f is convex, any local minimum x* is a global minimum of
f. If in addition f is differentiable, then any stationary point x*,
i.e., where V f(x*) = 0, is a global minimum of f.

af(x) + (1 - a)f(y)

f(2)

Quelle: Bertsekas
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Sufficient Optimality Conditions

Second Order Sufficient Conditions

Let f : R™ — R be twice continuously differentiable in an open
neighbourhood of x* and suppose that x* satisfies the conditions

Vf(x*) =0
and
V2 f is positive definite.
Then a* is a strict unconstrained local minimum of f.
In particular, there exists scalars v > 0 and € > 0 such that

f(x) > f(*) + 3lle — *||2, Va with ||z —2*| <e.
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Unconstrained Optimization:
» Gradient Methods
» Newton's Method and Variations

» Least-Squares Problems

References:

» J. Nocedal, S.J. Wright. Numerical Optimization (Second
Edition). Springer Verlag

» D.P. Bertsekas. Nonlinear Programming (Second Edition).

Athena Scientific
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Gradient Methods
Unconstrained Optimization Stepsize Selection
Some Remarks on Convergence

Existence of Minima

Consider
min f(x)
Two possibilities:
» The set {f(x)|z € X} is unbounded below and there is not
optimal solution
» The set {f(x)|x € X} is bounded below

» A global minimum exists if f is continuous and X is compact
(Weierstrass theorem)

» A global minimum exists if X is closed, and f is continuous
and coercive, that is, f(x) — oo when ||z| — oo.
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Gradient Methods
Unconstrained Optimization Stepsize Selection
Some Remarks on Convergence

Principal Gradient Methods

Gradient Method
We choose the iteration

xktl = gk 4 ok dk, k=0,1,...
where, if V f(z*) # 0, the direction d* satsifies
Vf(x*)Td* <o,

and o is a positive stepsize.

Goal: Choose direction d* and stepsize a* such that

f(mk-'_l):f(mk"_akdk)<.f(mk)’ k=0,1,...
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Some Remarks on Convergence

Principal Gradient Methods

Definition
Suppose f : R™ — R is continuously differentiable, a direction d is
called gradient related if

Vf(z)Td < o.

Note: If d¥ is gradient related, then
f(@F) = f(a* + adk) < f(2*), k=0,1,...

for a sufficiently small. Proof ...
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Principal Gradient Methods

Definition

Suppose f : R™ — R is continuously differentiable, a direction d is
called gradient related if

Vf(z)Td < o.
Note: If d¥ is gradient related, then

f(@F) = f(a* + adk) < f(2*), k=0,1,...
for a sufficiently small. Proof ...

Principal Example

Given a positive definite matrix D¥, we choose the direction
d* = —D*V f(x*) to obtain
xktl = 2k — ok DFV f(2*), k=0,1,....
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Gradient Methods
Unconstrained Optimization Stepsize Selection
Some Remarks on Convergence

Descent Directions

» Steepest Descent
» Choose D¥ = I, where I is the n X n identity matrix
> lteration
xhtl =k — ok V f(x*)

» Problem: often leads to slow convergence

x0

Quelle: Bertsekas
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Gradient Methods
Unconstrained Optimization Stepsize Selection
Some Remarks on Convergence

Descent Directions

» Steepest Descent
» Choose D¥ = I, where I is the n X n identity matrix
> lteration
xhtl =k — ok V f(x*)

» Problem: often leads to slow convergence

» Newton’s Method
» Choose D¥ = (V2 f(x*))~1
» lteration
2 = ok ok (V2f ()71 V()

x0

Quelle: Bertsekas
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Gradient Methods
Unconstrained Optimization Stepsize Selection
Some Remarks on Convergence

Descent Directions

» Newton's Method — Idea: Minimize quadratic approximation of
f around z* at each iteration

fH(x) = f(2*) + V() (2 - &) + 3@ — )T V2 f(2*) (@ - 2¥).
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Gradient Methods
Unconstrained Optimization Stepsize Selection
Some Remarks on Convergence

Descent Directions

» Newton's Method — Idea: Minimize quadratic approximation of
f around z* at each iteration

FH(@) = F(a*) + V(0 — a¥) + Lz - 2H)T V2 (b) (o — ab),
Next iterate ¥t is minimum of f*(x), i.e., V¥ (x) = 0,
Vf(z*) + V2f(a*) (z —2*) =0

and thus
2 = ok — (V2F(@M) TV F(h)

109 :\fl Quadratic Approximation of f at x0

uadratic Approximation of f at x1
Q op Quelle: Bertsekas
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Some Remarks on Convergence

Descent Directions

» Diagonally Scaled Steepest Descent
» Choose D* = diag(d¥), i = 1,...,n, where
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Gradient Methods
Unconstrained Optimization Stepsize Selection
Some Remarks on Convergence

Descent Directions

» Diagonally Scaled Steepest Descent
» Choose D* = diag(d¥), i = 1,...,n, where
dk ~ <62‘f(.’13k)) -
¢ (8x;)?
» Modified Newton’s Method
» Choose D¥ = (V2f(z°))~ !, k=0,1,...
» Hessian V2 f(x°) needs to be positive definite

» Variation: Recompute Hessian every p > 1 iterations
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Unconstrained Optimization Stepsize Selection
Some Remarks on Convergence

Descent Directions

» Diagonally Scaled Steepest Descent

» Choose D* = diag(d¥), i = 1,...,n, where

i (21E)
* (0x;)2

» Modified Newton’s Method

» Choose D¥ = (V2f(z°))~ !, k=0,1,...

» Hessian V2 f(x°) needs to be positive definite

» Variation: Recompute Hessian every p > 1 iterations
» Discretized Newton’s Method

» Choose D* = (H(z*))", k=0,1,...

» H(x*) is spd approximation of V2 f(x*)

» Finite difference approximations of second derivative based on

first dervatives of f
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Gradient Methods
Unconstrained Optimization Stepsize Selection

Some Remarks on Convergence

Descent Directions

» Quasi-Newton methods
Approximate Hessian matrix using rank-one updates, i.e., adjust
DF¥ at each step in order to approximate the Newton direction.

Most popular: Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method
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Gradient Methods
Unconstrained Optimization Stepsize Selection
Some Remarks on Convergence

Descent Directions

» Quasi-Newton methods
Approximate Hessian matrix using rank-one updates, i.e., adjust
DF¥ at each step in order to approximate the Newton direction.
Most popular: Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method

» Gauss-Newton Method (Least Squares Problem)

min f(z) = ;llg(@)|* = %El(gi(w))2
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Gradient Methods
Unconstrained Optimization Stepsize Selection
Some Remarks on Convergence

Descent Directions

» Quasi-Newton methods
Approximate Hessian matrix using rank-one updates, i.e., adjust
DF¥ at each step in order to approximate the Newton direction.
Most popular: Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method

» Gauss-Newton Method (Least Squares Problem)

min f(z) = ;llg(@)|* = %El(gi(w))2

Other choices, where d* is not expressed as d* = —D*V f(x*)
» Conjugate Gradient Method
» Coordinate Descent Method
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Gradient Methods
Unconstrained Optimization Stepsize Selection
Some Remarks on Convergence

Stepsize Selection

» Minimization Rule

» Choose a® such that
f(xF + akdk) = m>i{)1 f(zF + ad®)

» Minimize cost function along the direction d*.
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Gradient Methods
Unconstrained Optimization Stepsize Selection
Some Remarks on Convergence

Stepsize Selection

» Minimization Rule
» Choose a® such that
f(xF + akdk) = m>in f(zF + ad®)
a>0
» Minimize cost function along the direction d*.

» Limited Minimization Rule
» Choose a® such that

f(zF + akd*) = m[i)n] f(zF + ad®)
ae|0,s
where s > 0 is a fixed scalar

Note: Minimization and limited minimization rules typically require
one-dimensional line search algorithms (e.g. quadratic or cubic
interpolation method, Golden Section method) which are solved
approximately.
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Gradient Methods
Unconstrained Optimization Stepsize Selection
Some Remarks on Convergence

Stepsize Selection

» Constant Stepsize
» Select a fixed stepsize s > 0 and
ak =s
» |f stepsize is too large, divergence will occur. If stepsize is too
small, convergence will be very slow.
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Unconstrained Optimization Stepsize Selection
Some Remarks on Convergence

Stepsize Selection

» Constant Stepsize

» Select a fixed stepsize s > 0 and

ak =s
» |f stepsize is too large, divergence will occur. If stepsize is too
small, convergence will be very slow.

» Diminishing Stepsize

» Choose a® such that

ak — 0 and i akf = oo
k=0

» Good theoretical convergence properties, but convergence tends
to be slow
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Gradient Methods
Unconstrained Optimization Stepsize Selection
Some Remarks on Convergence

Stepsize Selection

» Successive Stepsize Reduction — Armijo Rule

» Choose fixed scalars s, 3, and o, with 0 < 8 < 1, and
0 <o <1, and set

ak = pgmeg,
where my, is the first nonnegative integer m for which
f(@*) = f(z* + pmsd*) > —a sV f(2*)Td"
» Typical values: s =1, 0 € [107°%,107}], B € [0.1,0.5]
» Goldstein Rule
» Select fixed scalar o € (0,0.5), choose a* to satisfy
f@* +ald®) — @b
- akV f(xk)Tdk -
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Unconstrained Optimization Stepsize Selection
Some Remarks on Convergence

Stepsize Selection

Line search by the Armijo rule

Set of Acceptable

Stepsizes Unsuccessful Stepsize
S ™

aVi(xKydk

IGPM, RWTH Aachen Numerisches Rechnen

0 Stepsize ak = p?s | Bs VoS @
: I !
! 1
:
1
'
\ ‘
1K + k) - (xK)
oaVi(xKydk

Quelle: Bertsekas



Gradient Methods
Unconstrained Optimization Stepsize Selection
Some Remarks on Convergence

Convergence Results

Constant and Diminishing Stepsizes

Let {*} be a sequence generated by a gradient method
xktl = zF + akdF, where {d*} is gradient related. Assume that
for some constant L > 0, we have
IVf(x) = VF@)l < Lllz —yl|, Vo,yeR™
Assume that either
> there exists a scalar € such that for all k
(2 — ¢)|Vf(z")Td"|
L||d*||?

0<e<akF<
or
k © k _
» a® - 0and ) 2 o = oo.

Then either f(x*) — —oo or else { f(z*)} converges to a finite
value and V f(x*) — 0.
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Constant and Diminishing Stepsizes

Idea of convergence proof

/
avixkydk + @/2)a2L|dK]2
= [V d'|
L
0 ! @
1
1
1
1
1K + ad) - ek
aviekydk O+ ad)- 1)

Quelle: Bertsekas
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Some Remarks on Convergence

Convergence Results

Minimization, Armijo, and Goldstein Rule

Let {z*} be a sequence generated by a gradient method

xktl = x* 4 o*d*, and assume that {d*} is gradient related
and o is chosen by the minimization rule, or the limited
minimization rule, or the Armijo, or the Goldstein rule. Then every
limit point of {2¥} is a stationary point.
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Unconstrained Optimization

Rate of Convergence

Gradient Methods
Stepsize Selection
Some Remarks on Convergence

> Quadratic Model Analysis: f(z) = 227Qx, with Q > 0

> Steepest Descent

xktl = gk — oV f(z*) = (I — *Q)x*

We obtain
[z _ M —m
lz* = M+m
For minimization stepsize
R <M — m)2
f(xk) — \M+m
Condition number of Q is %

IGPM, RWTH Aachen

max {|1- am|,|1- aM[}

Stepsizes that
Guarantee Convergence

Quelle: Bertsekas
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Gauss-Newton Method

Least Square Problems Zempe

Gauss-Newton

Least Squares Problem

min (@) = 3lg@)I? = 3 $ (@u(e))?

Gauss-Newton:

» Given a point =¥, linearize g to obtain
g(x, %) = g(x*) + Vg(*)T (z — =)
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Gauss-Newton Method

Least Square Problems Zempe

Gauss-Newton

Least Squares Problem

min (@) = 3lg@)I? = 3 $ (@u(e))?

Gauss-Newton:
» Given a point =¥, linearize g to obtain

g(z,a*) = g(z*) + Vg(z*) (z — *)
» Minimize norm of linearized function g

k+1

241 = arg min 33(z, )|
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Gauss-Newton Method

Least Square Problems Zempe

Gauss-Newton

Least Squares Problem

min f(z) = 2||9(17)||2 = % .gl(gi(m)V

TER™
Gauss-Newton:
» Given a point =¥, linearize g to obtain
g(x, %) = g(x*) + Vg(*)T (z — =)

» Minimize norm of linearized function g

k41 _ 1~ ky||2
@l = arg min 3 [|§(z, 2¥)||
> lteration
2f =2k — (Vg(a*)Vg(z*)T) "1 Vg (") g(z¥)
assuming Vg(z¥)Vg(x*)T is invertible.
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Gauss-Newton Method

Least Square Problems Zempe

Modified Gauss-Newton Method

» Often implemented in the modified form
et = 2k — ok (Vg (a*)Vg(z*)T + A*) I Vg(a*) g(2¥)
where A¥ is a diagonal matrix such that
Vg(xF)Vg(x*)T + A* : positive definite
to
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Gauss-Newton Method

Least Square Problems Zempe

Modified Gauss-Newton Method

» Often implemented in the modified form
et = ok — o*(Vg(2*)Vg(a*)" + AF) 71 Vg(z*) g(a*)
where A¥ is a diagonal matrix such that
Vg(xF)Vg(x*)T + A* : positive definite
to
» ensure descent
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where A¥ is a diagonal matrix such that
Vg(xF)Vg(x*)T + A* : positive definite
to

> ensure descent
» deal with case if Vg(z*)Vg(x*)T singular
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where A¥ is a diagonal matrix such that
Vg(xF)Vg(x*)T + A* : positive definite
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» deal with case if Vg(z*)Vg(x*)T singular
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Gauss-Newton Method

Least Square Problems Zempe

Modified Gauss-Newton Method

» Often implemented in the modified form
et = 2k — ok (Vg (a*)Vg(z*)T + A*) I Vg(a*) g(2¥)
where A¥ is a diagonal matrix such that
Vg(xF)Vg(x*)T + A* : positive definite
to

> ensure descent
» deal with case if Vg(z*)Vg(x*)T singular
» enhance convergence if Vg(x*)Vg(z*)T nearly singular

» Levenberg-Marquardt method:
AR =1,
where 1 € R and I is the identity matrix.
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Gauss-Newton Method
Example

Least Square Problems

Neural Networks — Example

Neural network training problem (m = 5, weights ug, u1)
5

> (zi — d(ury; + uo))?

=1

N[ =
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