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Problem Statement

Nonlinear Programming
We consider the problem

min
x∈X

f(x)

where
I f : Rn → R is a continuous (and usually differentiable)

function of n variables x ∈ Rn

I X = Rn or (more generally) X is a subset of Rn.

I If X = Rn, the problem is called unconstrained
I If f is linear and X is polyhedral, the problem is a linear

programming problem. Otherwise it is a nonlinear programming
problem.
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Problem Statement – Constrained

Constrained Problem
We consider the problem

min
x∈Rn

f(x)

subject to h(x) = 0,

g(x) ≤ 0

where f : Rn → R, h : Rn → Rm, and g : Rn → Rr are
continuously differentiable functions.

Here
I h = (h1, h2, . . . , hm) are the equality constraints, and
I g = (g1, g2, . . . , gr) are the inequality constraints.
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Two Main Issues

I Characterization of minima
I Necessary conditions
I Sufficient conditions
I Lagrange multiplier theory
I Sensitivity
I Duality

I Computation by iterative algorithms
I Iterative descent
I Approximation methods
I Dual and primal-dual methods
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Local and Global Minima
LOCAL AND GLOBAL MINIMA


f(x) 

x 

Strict Local 
Minimum 

Local Minima	 Strict Global 
Minimum 

Unconstrained local and global minima in one dimension.


Quelle: Bertsekas

Unconstrained local and global minima in one dimension
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Local and Global Minima

Definitions
I A point x∗ is an unconstrained local minimum of f if there

exists and ε > 0 such that
f(x∗) ≤ f(x), ∀x with ‖x− x∗‖ < ε.

I A point x∗ is a strict unconstrained local minimum of f if
there exists and ε > 0 such that
f(x∗) < f(x), ∀x 6= x∗ with ‖x− x∗‖ < ε.

I A point x∗ is a global minimum of f if
f(x∗) ≤ f(x), ∀x ∈ Rn.
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Taylor Expansion

Taylor’s Theorem
Suppose that f : Rn → R is continuously differentiable and that
p ∈ Rn. Then we have that

f(x+ p) = f(x) +∇f(x+ tp)Tp,

for some t ∈ [0, 1].

Moreover, if f is twice continuously differentiable, we have that

f(x+ p) = f(x) + pT ∇f(x) + 1
2
pT ∇2f(x+ tp) p

for some t ∈ [0, 1], and that

f(x+ p) = f(x) + pT ∇f(x) + 1
2
pT ∇2f(x) p+ O(‖p‖3).
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Special Case: Quadratic Cost Functions

Given A ∈ Rn×n, b ∈ Rn, and c ∈ R, we define the quadratic
form

f(x) = 1
2
xTAx− xT b+ c

where x ∈ Rn.
Example in R2
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Quadratic Cost Functions: Geometric Meaning

Quadratic forms for A:

(a) positive-definite
(b) negative-definite
(c) indefinite (and

positive-indefinite)
(d) indefinite

The Quadratic Form 5
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Figure 5: (a) Quadratic form for a positive-definite matrix. (b) For a negative-definite matrix. (c) For a
singular (and positive-indefinite) matrix. A line that runs through the bottom of the valley is the set of
solutions. (d) For an indefinite matrix. Because the solution is a saddle point, Steepest Descent and CG
will not work. In three dimensions or higher, a singular matrix can also have a saddle.

solution is a minimum of
; . �M1 , so

���f�H	
can be solved by finding an

�
that minimizes

; . �<1 . (If
�

is not
symmetric, then Equation 6 hints that CG will find a solution to the system 1

2 . �6� ) �G1g�Y�h	
. Note that

1
2 . �6� ) �G1

is symmetric.)

Why do symmetric positive-definite matrices have this nice property? Consider the relationship between;
at some arbitrary point i and at the solution point

�W�
� 8 1 	 . From Equation 3 one can show (Appendix C1)
that if

�
is symmetric (be it positive-definite or not),; .ji 1=� ; . �M1 ) 1

2
.ji *Y�<1 � � .ji *k�M1 � (8)

If
�

is positive-definite as well, then by Inequality 2, the latter term is positive for all iYl�4�
. It follows that�

is a global minimum of
;

.

The fact that
; . �M1 is a paraboloid is our best intuition of what it means for a matrix to be positive-definite.

If
�

is not positive-definite, there are several other possibilities.
�

could be negative-definite — the result
of negating a positive-definite matrix (see Figure 2, but hold it upside-down).

�
might be singular, in which

case no solution is unique; the set of solutions is a line or hyperplane having a uniform value for
;

. If
�

is none of the above, then
�

is a saddle point, and techniques like Steepest Descent and CG will likely fail.
Figure 5 demonstrates the possibilities. The values of

	
and @ determine where the minimum point of the

paraboloid lies, but do not affect the paraboloid’s shape.

Why go to the trouble of converting the linear system into a tougher-looking problem? The methods
under study — Steepest Descent and CG — were developed and are intuitively understood in terms of
minimization problems like Figure 2, not in terms of intersecting hyperplanes such as Figure 1.

Quelle: J.R. Shewchuk
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Quadratic Cost Functions: An Important Property

If f is a quadratic form and A is s.p.d., then
x∗ = arg min

x∈Rn
f(x)

solves the linear system Ax = b, that is
Ax∗ = b ⇔ x∗ = arg min

x∈Rn
f(x).

Proof
I Second Order Sufficient Condition
I Consider pertubation x+ p, p ∈ Rn

Note:
I Solution of linear system Ax = b “reduces” to solving an

optimization problem (→ Conjugate Gradient Method).
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Gradient and Directional Derivative

Recall that the derivative of f(x, y) : R2 → R along the
I x-direction (i.e. keeping y constant) is ∂f

∂x

I y-direction (i.e. keeping x constant) is ∂f
∂y

and the gradient is given by ∇f = [∂f
∂x

∂f
∂y

]T .

Directional Derivative
The directional derivative of a function f : Rn → R in the
direction p is given by

∇pf(x) := lim
ε→0

f(x+ εp)− f(x)

ε
.

For f continuously differentiable, we have
∇pf(x) = ∇f(x)T p.
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Perpendicularity of ∇f(x) to the level curve

I Consider any point x0 and the level curve of f through x0.

I Then the gradient of f at x0, ∇f(x0), is perpendicular to the
tangent direction of the contour at x0.

I Two ways to see this:

I Intuitively, the value of f does not change along the tangent, so
the gradient must be in the perpendicular direction.

I More formally, along the tangent, the value of f does not change
since we are moving along the contour.
⇒ The directional derivative is zero along p, if p is in the
direction of the tangent, that is

∇pf(x) = pT ∇f(x) = 0

and thus ∇f(x) is perpendicular to p.
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Convex Sets

Definition
Let C be a subset of Rn. We say that C is convex if

αx+ (1− α)y ∈ C, ∀x, y ∈ C, ∀α ∈ [0, 1].

αx + (1 - α)y, 0 < α < 1 

CONVEXITY 

x 

x 

y 

y 
x 

y 

x 
y 

Convex Sets Nonconvex Sets 

Convex and nonconvex sets.


αf(x) + (1 - α)f(y) 

x z 

f(z) 

y 

C 

A convex function. 

Quelle: Bertsekas
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Convex Functions

Definition
Let C be a convex subset of Rn. A function f : C → R is called
convex if
f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), ∀x, y ∈ C, ∀α ∈ [0, 1].
The function f is called concave if −f is convex.

αx + (1 - α)y, 0 < α < 1 
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Convex Sets Nonconvex Sets 

Convex and nonconvex sets.


αf(x) + (1 - α)f(y) 

x z 

f(z) 

y 

C 

A convex function. 
Quelle: Bertsekas
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Necessary Optimality Conditions

First Order Necessary Conditions
Let x∗ be an unconstrained local minimum of f : Rn → R, and
assume that f is continuously differentiable in an open
neighbourhood of x∗, then

∇f(x∗) = 0.

Second Order Necessary Conditions
Let x∗ be an unconstrained local minimum of f : Rn → R, and
assume that f is twice continuously differentiable in an open
neighbourhood of x∗, then

∇f(x∗) = 0
and

∇2f is positive semidefinite.
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The Case of a Convex Cost Function

Convex Cost Function
When f is convex, any local minimum x∗ is a global minimum of
f . If in addition f is differentiable, then any stationary point x∗,
i.e., where ∇f(x∗) = 0, is a global minimum of f .

αx + (1 - α)y, 0 < α < 1 
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Convex and nonconvex sets.
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Sufficient Optimality Conditions

Second Order Sufficient Conditions
Let f : Rn → R be twice continuously differentiable in an open
neighbourhood of x∗ and suppose that x∗ satisfies the conditions

∇f(x∗) = 0
and

∇2f is positive definite.
Then x∗ is a strict unconstrained local minimum of f .
In particular, there exists scalars γ > 0 and ε > 0 such that
f(x) ≥ f(x∗) + γ

2
‖x− x∗‖2, ∀x with ‖x− x∗‖ < ε.
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Topics

Unconstrained Optimization:
I Gradient Methods
I Newton’s Method and Variations
I Least-Squares Problems

References:
I J. Nocedal, S.J. Wright. Numerical Optimization (Second

Edition). Springer Verlag

I D.P. Bertsekas. Nonlinear Programming (Second Edition).
Athena Scientific

I . . .
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Existence of Minima

Consider
min
x∈X

f(x)

Two possibilities:
I The set {f(x)|x ∈ X} is unbounded below and there is not

optimal solution

I The set {f(x)|x ∈ X} is bounded below
I A global minimum exists if f is continuous and X is compact

(Weierstrass theorem)
I A global minimum exists if X is closed, and f is continuous

and coercive, that is, f(x)→∞ when ‖x‖ → ∞.
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Principal Gradient Methods

Gradient Method
We choose the iteration

xk+1 = xk + αk dk, k = 0, 1, . . .

where, if ∇f(xk) 6= 0, the direction dk satsifies

∇f(xk)Tdk < 0,

and αk is a positive stepsize.

Goal: Choose direction dk and stepsize αk such that

f(xk+1) = f(xk + αk dk) < f(xk), k = 0, 1, . . .
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Principal Gradient Methods

Definition
Suppose f : Rn → R is continuously differentiable, a direction d is
called gradient related if

∇f(x)Td < 0.

Note: If dk is gradient related, then
f(xk+1) = f(xk + αdk) < f(xk), k = 0, 1, . . .

for α sufficiently small. Proof . . .

Principal Example

Given a positive definite matrix Dk, we choose the direction
dk = −Dk∇f(xk) to obtain

xk+1 = xk − αkDk∇f(xk), k = 0, 1, . . ..
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Descent Directions

I Steepest Descent
I Choose Dk = I, where I is the n× n identity matrix
I Iteration

xk+1 = xk − αk∇f(xk)

I Problem: often leads to slow convergence

STEEPEST DESCENT AND NEWTON’S METHOD•

x0 

x0 

x1 

x2 

f(x) = 1 

f(x) = 3 < c2 

f(x) = 2 < c1 
. 

. 

. 

Quadratic Approximation of f at x0 

Quadratic Approximation of f at x1 

c

c

c

Slow convergence of steep­

est descent 

Fast convergence of New-

ton’s method w/ αk = 1. 

Given xk , the method ob­

tains xk+1 as the minimum 

of a quadratic approxima­

tion of f based on a sec­

ond order Taylor expansion 

around xk . 

Quelle: Bertsekas

I Newton’s Method
I Choose Dk = (∇2f(xk))−1

I Iteration
xk+1 = xk − αk (∇2f(xk))−1∇f(xk)
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Descent Directions

I Newton’s Method – Idea: Minimize quadratic approximation of
f around xk at each iteration
fk(x) = f(xk) +∇f(xk)T (x− xk) + 1

2
(x− xk)T ∇2f(xk) (x− xk).

Next iterate xk+1 is minimum of fk(x), i.e., ∇fk(x)
!
= 0,

∇f(xk) +∇2f(xk) (x− xk) = 0

and thus
xk+1 = xk − (∇2f(xk))−1∇f(xk)

STEEPEST DESCENT AND NEWTON’S METHOD•

x0 
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x2 

f(x) = 1 

f(x) = 3 < c2 

f(x) = 2 < c1 
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Quadratic Approximation of f at x1 

c

c

c

Slow convergence of steep­

est descent 

Fast convergence of New-

ton’s method w/ αk = 1. 

Given xk , the method ob­

tains xk+1 as the minimum 

of a quadratic approxima­

tion of f based on a sec­

ond order Taylor expansion 

around xk . 
Quelle: Bertsekas
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Descent Directions

I Diagonally Scaled Steepest Descent
I Choose Dk = diag(dki ), i = 1, . . . , n, where

dki ≈
(
∂2f(xk)

(∂xi)2

)−1

I Modified Newton’s Method
I Choose Dk = (∇2f(x0))−1, k = 0, 1, . . .

I Hessian ∇2f(x0) needs to be positive definite
I Variation: Recompute Hessian every p > 1 iterations

I Discretized Newton’s Method
I Choose Dk = (H(xk))−1, k = 0, 1, . . .

I H(xk) is spd approximation of ∇2f(xk)

I Finite difference approximations of second derivative based on
first dervatives of f
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Descent Directions

I Quasi-Newton methods
Approximate Hessian matrix using rank-one updates, i.e., adjust
Dk at each step in order to approximate the Newton direction.
Most popular: Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method

I Gauss-Newton Method (Least Squares Problem)

min
x∈Rn

f(x) = 1
2
‖g(x)‖2 = 1

2

m∑
i=1

(gi(x))2

Other choices, where dk is not expressed as dk = −Dk∇f(xk)

I Conjugate Gradient Method
I Coordinate Descent Method
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Stepsize Selection

I Minimization Rule
I Choose αk such that

f(xk + αkdk) = min
α≥0

f(xk + αdk)

I Minimize cost function along the direction dk.

I Limited Minimization Rule
I Choose αk such that

f(xk + αkdk) = min
α∈[0,s]

f(xk + αdk)

where s > 0 is a fixed scalar

Note: Minimization and limited minimization rules typically require
one-dimensional line search algorithms (e.g. quadratic or cubic
interpolation method, Golden Section method) which are solved
approximately.
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Stepsize Selection

I Constant Stepsize
I Select a fixed stepsize s > 0 and

αk = s

I If stepsize is too large, divergence will occur. If stepsize is too
small, convergence will be very slow.

I Diminishing Stepsize
I Choose αk such that

αk → 0 and
∞∑
k=0

αk =∞

I Good theoretical convergence properties, but convergence tends
to be slow
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Stepsize Selection

I Successive Stepsize Reduction – Armijo Rule
I Choose fixed scalars s, β, and σ, with 0 < β < 1, and

0 < σ < 1, and set
αk = βmks,

where mk is the first nonnegative integer m for which

f(xk)− f(xk + βmsdk) ≥ −σβms∇f(xk)Tdk .

I Typical values: s = 1, σ ∈ [10−5, 10−1], β ∈ [0.1, 0.5]

I Goldstein Rule
I Select fixed scalar σ ∈ (0, 0.5), choose αk to satisfy

σ ≤
f(xk + αkdk)− f(xk)

αk∇f(xk)Tdk
≤ 1− σ.

IGPM, RWTH Aachen Numerisches Rechnen 489



Introduction to Optimization
Unconstrained Optimization

Least Square Problems

Gradient Methods
Stepsize Selection
Some Remarks on Convergence

Stepsize Selection

Line search by the Armijo rule

CHOICES OF STEPSIZE I


•	 Minimization Rule: αk is such that 

f(xk + αkdk) =  min f(xk + αdk). 
α≥0 

• Limited Minimization Rule: Min over α ∈ [0, s] 

• Armijo rule: 

σα∇f(xk)'dk 

α∇f(xk)'dk 

0 α 

Set of Acceptable 
Stepsizes 

× 
s 

× 
βs 

Unsuccessful 
Trials 

β2sStepsize αk = 

f(xk + αdk) - f(xk) 

× 

Stepsize 

Start with s and continue with βs, β2s, ..., until βms falls 

within the set of α with 

f(x k) − f (x k + αdk) ≥ −σα∇f (x k)′dk . 

Quelle: Bertsekas
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Convergence Results

Constant and Diminishing Stepsizes

Let {xk} be a sequence generated by a gradient method
xk+1 = xk + αkdk, where {dk} is gradient related. Assume that
for some constant L > 0, we have

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn.
Assume that either

I there exists a scalar ε such that for all k

0 < ε ≤ αk ≤
(2− ε)|∇f(xk)Tdk|

L‖dk‖2
or

I αk → 0 and
∑∞
k=0 α

k =∞.
Then either f(xk)→ −∞ or else {f(xk)} converges to a finite
value and ∇f(xk)→ 0.
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Constant and Diminishing Stepsizes

Idea of convergence proofMAIN PROOF IDEA


0 α 

α∇f(xk)'dk  + (1/2)α2L||dk||2 

× 

α∇f(xk)'dk 

α = |∇f(x k)'d
k
| 

L||d
k
||

|2 

f(xk + αdk) - f(xk) 

The idea of the convergence proof for a constant stepsize. 

Given xk and the descent direction dk , the cost differ-

ence f (xk + αdk) − f (xk) is majorized by α∇f (xk)′dk + 

2 
α2L‖dk‖2 (based on the Lipschitz assumption; see next 

slide). Minimization of this function over α yields the step- 

size 
|∇f (xk)′dk|

α = 
L‖dk‖2 

This stepsize reduces the cost function f as well. 

1 

Quelle: Bertsekas
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Convergence Results

Minimization, Armijo, and Goldstein Rule

Let {xk} be a sequence generated by a gradient method
xk+1 = xk + αkdk, and assume that {dk} is gradient related
and αk is chosen by the minimization rule, or the limited
minimization rule, or the Armijo, or the Goldstein rule. Then every
limit point of {xk} is a stationary point.
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Rate of Convergence

I Quadratic Model Analysis: f(x) = 1
2
xTQx, with Q > 0

I Steepest Descent
xk+1 = xk − αk∇f(xk) = (I − αkQ)xk

We obtain
‖xk+1‖
‖xk‖

≤
M −m
M +m

For minimization stepsize
f(xk+1)

f(xk)
≤
(
M −m
M +m

)2

Condition number of Q is M
m

OPTIMAL CONVERGENCE RATE


• The value of αk that minimizes the bound is 
α∗ = 2/(M + m), in which case 

‖xk+1‖ M − m ≤ ‖xk‖ M + m 

0 α 

1 

|1 - αM | 

|1 - αm | 

max {|1 - αm|, |1 - αM|} 

M - m 
M + m 

2 
M + m 

1 
M 

1 
m 

2 
M 

Stepsizes that 
Guarantee Convergence 

• Conv. rate for minimization stepsize (see text) 

( )2
f(xk+1) M − m ≤ 
f(xk) M + m 

• The ratio M/m is called the condition number 
of Q, and problems with M/m: large are called 
ill-conditioned . 

Quelle: Bertsekas
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Gauss-Newton

Least Squares Problem

min
x∈Rn

f(x) = 1
2
‖g(x)‖2 = 1

2

m∑
i=1

(gi(x))2

Gauss-Newton:

I Given a point xk, linearize g to obtain
g̃(x, xk) = g(xk) +∇g(xk)T (x− xk)

I Minimize norm of linearized function g̃
xk+1 = arg min

x∈Rn

1
2
‖g̃(x, xk)‖2

I Iteration
xk+1 = xk − (∇g(xk)∇g(xk)T )−1∇g(xk) g(xk)

assuming ∇g(xk)∇g(xk)T is invertible.
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Modified Gauss-Newton Method

I Often implemented in the modified form
xk+1 = xk − αk(∇g(xk)∇g(xk)T + ∆k)−1∇g(xk) g(xk)

where ∆k is a diagonal matrix such that
∇g(xk)∇g(xk)T + ∆k : positive definite

to

I ensure descent
I deal with case if ∇g(xk)∇g(xk)T singular
I enhance convergence if ∇g(xk)∇g(xk)T nearly singular

I Levenberg-Marquardt method:
∆k = µ I,

where µ ∈ R+ and I is the identity matrix.
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Neural Networks – Example

Neural network training problem (m = 5, weights u0, u1)

1
2

5∑
i=1

(zi − φ(u1yi + u0))2
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