Klausur zur Analysis für Informatiker

Dauer der Klausur: 120 Minuten. Gesamtpunktzahl: 100 Punkte. Bestehensgrenze: 33 Punkte.

Aufgabe 1 (5+3 Punkte)

a) Zeigen Sie, dass

$$\sum_{k=2}^{n} \frac{k-1}{k!} = 1 - \frac{1}{n!}$$

für alle $n \in \mathbb{N}$ mit $n \ge 2$ gilt.

b) Untersuchen Sie die Reihe

$$\sum_{k=2}^{\infty} \frac{k-1}{k!}$$

auf Konvergenz und bestimmen Sie gegebenenfalls den Wert der Reihe.

Aufgabe 2 (2+4+6 Punkte)

a) Untersuchen Sie die Folge $(a_n)_{n\in\mathbb{N}}$ definiert durch

$$a_n := \frac{3n^2 + 5n - 7}{5n^2 - 7n + 3}$$

für alle $n \in \mathbb{N}$ auf Konvergenz, und bestimmen Sie gegebenenfalls den Grenzwert.

b) Untersuchen Sie die Folge $(a_n)_{n\in\mathbb{N}}$ definiert durch

$$a_n := \frac{3^n + 5^{n+1}}{(-4)^n + 5^n}$$

für alle $n \in \mathbb{N}$ auf Konvergenz, und bestimmen Sie gegebenenfalls den Grenzwert.

c) Untersuchen Sie die durch $a_1 := 0$ und $a_{n+1} := \sqrt{2a_n + 3}$ für alle $n \in \mathbb{N}$ definierte Folge $(a_n)_{n \in \mathbb{N}}$ auf Wohldefiniertheit sowie Konvergenz, und bestimmen Sie gegebenenfalls den Grenzwert.

Aufgabe 3 (5 Punkte)

Untersuchen Sie die Funktion

$$f:(0,\infty)\to\mathbb{R},\;x\mapsto egin{cases} rac{\log(x^2)-(\log(x))^2}{\log(x)} & ext{, falls }x
eq 1,\ 2 & ext{, falls }x=1, \end{cases}$$

auf Stetigkeit und Differenzierbarkeit im Punkt $x_0 = 1$.

Aufgabe 4 (2+3+2 Punkte)

Es sei

$$M := \left\{ \cos \left(\frac{2}{n} \right) \mid n \in \mathbb{N} \right\}.$$

- a) Begründen Sie, warum M ein Infimum und ein Supremum besitzt.
- b) Bestimmen Sie das Infimum und das Supremum von *M*.
- c) Zeigen Sie, dass M nicht abgeschlossen ist.

Aufgabe 5 (7+5+5 Punkte)

a) Zeigen Sie, dass die Reihe

$$\sum_{k=2}^{\infty} \frac{2^{k+1} + 3^k}{4^{k-1}}$$

absolut konvergiert und bestimmen Sie ihren Wert.

b) Untersuchen Sie die Reihe

$$\sum_{k=1}^{\infty} \frac{k^2}{e^{k-1}}$$

auf Konvergenz.

c) Bestimmen Sie den Konvergenzradius der Potenzreihe

$$\sum_{k=1}^{\infty} \left(9 + \frac{1}{k}\right)^{\frac{k}{2}} x^k.$$

Aufgabe 6 (5+5 Punkte)

a) Bestimmen Sie den Wert des uneigentlichen Integrals

$$\int_{0+}^{1} x \cdot \log(x) \, \mathrm{d}x.$$

b) Untersuchen Sie das uneigentliche Integral

$$\int_{1}^{\infty} \frac{\arctan(x)}{x} \, \mathrm{d}x$$

auf Konvergenz.

Hinweis: Sie dürfen ohne Beweis $\lim_{x\to\infty}\arctan(x)=\frac{\pi}{2}$ verwenden.

Aufgabe 7 (5 Punkte)

Es sei $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2 e^{x^2+1}$. Bestimmen Sie das Taylorpolynom zweiten Grades im Entwicklungspunkt $x_0 = 0$.

Aufgabe 8 (5 Punkte)

Zeigen Sie: Für jedes $x \in (0, \frac{\pi}{2})$ gilt die Ungleichung

$$\sin(x) - x \cdot \cos(x) \leqslant x^2 \sin(x).$$

Hinweis: Verwenden Sie den Mittelwertsatz.

Aufgabe 9 (2+5 Punkte)

Berechnen Sie jeweils den Grenzwert.

- a) $\lim_{x \to 0} \frac{1 \cos(\frac{x}{2})}{1 \cos(x)}$.
- b) $\lim_{x\downarrow 0} x^{\arcsin(x)}$.

Aufgabe 10 (8 Punkte)

Es sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch $f(x,y) := \frac{1}{3}x^3 - 2xy + 3x + \frac{1}{2}y^2$ für alle $(x,y)^T \in \mathbb{R}^2$. Bestimmen Sie Lage und Art der lokalen Extremstellen von f.

Aufgabe 11 (4+3 Punkte)

Berechnen Sie jeweils das Integral.

a)
$$\int_{0}^{1} \frac{x^3 - 7x^2 + 12x - 7}{x^2 - 7x + 10} dx.$$

b)
$$\int_{0}^{1} \cosh(x) \cdot \sinh(x) dx.$$

Aufgabe 12 (3+3+3 Punkte)

Beweisen oder widerlegen Sie jeweils die Aussage.

a) Es seien $a, b \in \mathbb{R}$ mit $0 < a \le b$. Dann gilt

$$\lim_{n\to\infty}\sqrt[n]{a^n+b^n}=b.$$

- b) Sind $f,g:\mathbb{R}\to\mathbb{R}$ injektiv, so ist auch $f\cdot g$ injektiv.
- c) Es gibt ein $x \in \mathbb{R}$ mit $e^x = x + 2$.