Kapitel 1

Alphabete, Wörter, Sprachen

Vorlesung: 25.04.2003

Zeichenreihen als Grundobjekte der Informatik

- Präzisierung des Algorithmusbegriffs durch TM
- Kommunikation mit rechner über Tastatur
- Informationsverarbeitung: Transformation von Bitstrings

1. Grundbegriff:

 Σ Alphabet, nicht leere endliche Menge a $\in \Sigma$ Buchstabe, Zeichen, Character

2. Grundbegriff

```
: \Sigma^* Menge der Wörter über \Sigma.

\Sigma^* := \{a_1, a_2, \dots, a_n | n \in \mathbb{N}\} Wörter, Zeichen, Strings

n = 0: das leere Wort, Bezeichnung: \varepsilon
```

Bsp:

Bitstrings, Webadresse, Dezimalzahl, RGB-Farbwerte, Java-Programme

Operationen auf Σ^* :

• Verkettung (Konkatenation)

```
\begin{array}{ll} \cdot \cdot \cdot : & \Sigma^* \cdot \Sigma^* \to \Sigma^* \\ w \cdot v := wv \\ \\ \text{(i) } \cdot \text{ ist assoziativ: } (u \cdot v) \cdot w = u \cdot (v \cdot w) \\ \\ \text{(ii) } \varepsilon \text{ ist } \cdot \text{ neutral: } \varepsilon \cdot w = w \cdot \varepsilon \end{array}
```

Sprechweise: $\langle \Sigma^*, \cdot, \varepsilon \rangle$ ist ein Monoid.

Bemerkung:

freie Erzeugung:
$$a_1 \dots a_n = b_1 \dots b_n$$

 $n = m, a_i = b_i (i = 1 \dots n)$

• Länge eines Wortes

$$w = a_1 \dots a_n \in \Sigma^*$$

 $|a_1 \dots a_n| := u$, falls alle $a_i \in \Sigma^*$,
also $|\varepsilon| = 0$ und $|v \cdot w| = |v| + |w|$

• Potenz eines Wertes

$$w \in \Sigma^*$$

$$w^0 := \varepsilon$$

$$w^{n+1} := w^n \cdot w$$

• Spiegelbild eines Wortes

$$\varepsilon^R := \varepsilon (wa)^R := aw^R$$

3. Grundbegriff

$$\mathrm{P}(\Sigma^*) := \{L \mid L \subseteq \Sigma^*\}$$
 Menge der formalen Sprachen über Σ

Bsp:

 $\emptyset, \{\varepsilon\}, \{w_1, \dots, w_n\}, \Sigma^*$, Menge der Java-Programme, Menge der URLs, Menge der HTML-Beschreibungen

Operationen auf $P(\Sigma^*)$

• boolesche Operationen:

$$L_1 \cup L_2, L_1 \cap L_2, \overline{L} := \Sigma^* \setminus$$

• Komplexmodul:

$$L_1L_2 := \{w_1w_2 \mid w_i \in L_i\}$$

$$L_1L_2 := \{w_1w_1 \mid w_1 \in L_1\}$$
besser:
$$L_1L_2 := \{wv \mid w \in L_1, v \in L_2\}$$

$$L_1L_2 := \{wv \mid w, v \in L_1\}$$

• Potenz einer Sprache:

$$L^0 := \{\varepsilon\}$$
$$L^{n+1} := L^n L$$

- Stern einer Sprache: (Iteration, Repetition) $L^* := \bigcup_{n \ N} L^n \quad \curvearrowright \emptyset^* = \{\varepsilon\}$
- Reguläre Operationen: $L_1 \cup L_2, L_1L_2, L^*$

Kapitel 2

Reguläre Ausdrücke und endliche Automaten

Vorlesung: 29.04.2003

2.1 Reguläre Ausdrücke

Ein regulärer Ausdruck beschreibt eine formale Sprache [Mengen von Zeichenreihen], die sich mit Hilfe regulärer Operationen (Vereinigung, Komplexprodukt, Stern) aus einfachen Sprachen erzeugen lässt.

Definition - Syntax von $RegE(\Sigma)$

Sei Σ ein Alphabet. Die Menge Reg $\mathrm{E}(\Sigma)$ der regulären Ausdrücke über Σ ist induktiv definiert durch

- (i) $\Lambda \in \operatorname{RegE}(\Sigma)$
- (ii) $a \in \text{RegE}(\Sigma)$ für jedes $a \in \Sigma$

Wenn α und $\beta \in \text{RegE}(\Sigma)$, so auch

- (iii) $(\alpha \vee \beta) \in \text{RegE}(\Sigma)$ "Alternative"
- (iv) $(\alpha \cdot \beta) \in \text{RegE}(\Sigma)$ "Konkatenation"
- (v) $(\alpha^*) \in \text{RegE}(\Sigma)$ "Repetition"

Vereinfachte Schreibweise:

- Präzendenzregel, um Klammern zu sparen:
 - \ast bindet stärker als \cdot
 - \cdot bindet stärker als \vee
- \bullet der Punkt "·" wird weggelassen.

Bsp:

$$a \vee b^*c$$
 statt $(a \vee ((b^*) \cdot c))$

Definition - Semantik von $RegE(\Sigma)$

Ein regulärer Ausdruck α beschreibt eine formale Sprache $|[\alpha]| = L(\alpha) \subseteq \Sigma^*$.

- 1. $L(\Lambda) := \emptyset$
- 2. $L(a) := \{a\}$
- 3. $L(\alpha \vee \beta) := L(\alpha) \cup L(\beta)$
- 4. $L(\alpha \cdot \beta) := L(\alpha) \cdot L(\beta)$
- 5. $L(\alpha^*) := L(\alpha)^*$

Sprechweise:

 $w \in L(\alpha)$ $\curvearrowright w$ ist ein Match für α , α ist ein Muster (Pattern).

Definition

Die Klasse $\mathrm{RegL}(\Sigma)$ der regulären Sprachen über Σ ist induktiv definert durch

- \emptyset , $\{a\} \in \text{RegL für alle } a \in \Sigma$
- $L, L' \in \text{RegL}(\Sigma)$ $\curvearrowright L \cup L', LL', L^* \in \text{RegL}(\Sigma)$

Folg.: $RegL(\Sigma) = \mathcal{L}(\Sigma, RegE)$

$$L(\Lambda^*) = L(\Lambda)^* = \emptyset^* = \bigcup_{n=0}^{\infty} \emptyset^n = \{\varepsilon\} \qquad (\emptyset^0 = \{\varepsilon\})$$

$$L^+ := \bigcup_{n=1}^{\infty}$$

2.2 Deterministische endliche Automaten

Definition

Seien Q und Σ nicht leere, endliche Mengen, $q_0 \in Q, F \subseteq Q$ und $\delta: Q \times \Sigma \to Q$. Dann heisst

$$\mathfrak{a} = \langle Q, \Sigma, \delta, q_0, F \rangle$$

ein deterministischer, endlicher Automat über Σ mit der Zustandsmenge Q, dem Eingabealphabet Σ , der Transitionsfunktion δ , dem Anfangszustand q_0 und der Endzustandsmenge F.

Bsp:

 $\mathfrak{a}=<Q,\Sigma,\delta,q_0,F>\ in\ DFA(\Sigma)$ bestimmt die erweiterte Transitionsfunktion

$$\overline{\delta}: Q \times \Sigma^* \to Q$$

$$\operatorname{mit} \, \overline{\delta}(q,\varepsilon) := q$$

$$\overline{\delta}(q,wa) := \delta(\overline{\delta}(q,w),a) \quad \text{ für } w \in \Sigma^*, a \in \Sigma$$

und damit die von $\mathfrak a$ erkannte Sprache

$$L(\mathfrak{a}) := \{ w \in \Sigma^* \mid \overline{\delta}(q_0, w) \in F \}$$

Bsp:

 $\mathcal{L}(\Sigma, DFA)$ Klasse der von endlichen Automaten erkennbaren Sprachen über $\Sigma.$

Ziel:

 $\mathcal{L}(\Sigma, DFA) = \text{RegL}(\Sigma)$ nachweisen.

Hilfsmittel: nicht-deterministische Automaten Hinweis: Scanner, Suchmaschinen, SW-Tools